ManageIQ/manageiq-ui-classic

View on GitHub
app/javascript/components/timeline-options/timeline-options.jsx

Summary

Maintainability
A
3 hrs
Test Coverage

Unexpected parentheses around single function argument having a body with no curly braces.
Open

        setState((state) => ({

Require parens in arrow function arguments (arrow-parens)

Arrow functions can omit parentheses when they have exactly one parameter. In all other cases the parameter(s) must be wrapped in parentheses. This rule enforces the consistent use of parentheses in arrow functions.

Rule Details

This rule enforces parentheses around arrow function parameters regardless of arity. For example:

/*eslint-env es6*/

// Bad
a => {}

// Good
(a) => {}

Following this style will help you find arrow functions (=>) which may be mistakenly included in a condition when a comparison such as >= was the intent.

/*eslint-env es6*/

// Bad
if (a => 2) {
}

// Good
if (a >= 2) {
}

The rule can also be configured to discourage the use of parens when they are not required:

/*eslint-env es6*/

// Bad
(a) => {}

// Good
a => {}

Options

This rule has a string option and an object one.

String options are:

  • "always" (default) requires parens around arguments in all cases.
  • "as-needed" allows omitting parens when there is only one argument.

Object properties for variants of the "as-needed" option:

  • "requireForBlockBody": true modifies the as-needed rule in order to require parens if the function body is in an instructions block (surrounded by braces).

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint arrow-parens: ["error", "always"]*/
/*eslint-env es6*/

a => {};
a => a;
a => {'\n'};
a.then(foo => {});
a.then(foo => a);
a(foo => { if (true) {} });

Examples of correct code for this rule with the default "always" option:

/*eslint arrow-parens: ["error", "always"]*/
/*eslint-env es6*/

() => {};
(a) => {};
(a) => a;
(a) => {'\n'}
a.then((foo) => {});
a.then((foo) => { if (true) {} });

If Statements

One of benefits of this option is that it prevents the incorrect use of arrow functions in conditionals:

/*eslint-env es6*/

var a = 1;
var b = 2;
// ...
if (a => b) {
 console.log('bigger');
} else {
 console.log('smaller');
}
// outputs 'bigger', not smaller as expected

The contents of the if statement is an arrow function, not a comparison.

If the arrow function is intentional, it should be wrapped in parens to remove ambiguity.

/*eslint-env es6*/

var a = 1;
var b = 0;
// ...
if ((a) => b) {
 console.log('truthy value returned');
} else {
 console.log('falsey value returned');
}
// outputs 'truthy value returned'

The following is another example of this behavior:

/*eslint-env es6*/

var a = 1, b = 2, c = 3, d = 4;
var f = a => b ? c: d;
// f = ?

f is an arrow function which takes a as an argument and returns the result of b ? c: d.

This should be rewritten like so:

/*eslint-env es6*/

var a = 1, b = 2, c = 3, d = 4;
var f = (a) => b ? c: d;

as-needed

Examples of incorrect code for this rule with the "as-needed" option:

/*eslint arrow-parens: ["error", "as-needed"]*/
/*eslint-env es6*/

(a) => {};
(a) => a;
(a) => {'\n'};
a.then((foo) => {});
a.then((foo) => a);
a((foo) => { if (true) {} });

Examples of correct code for this rule with the "as-needed" option:

/*eslint arrow-parens: ["error", "as-needed"]*/
/*eslint-env es6*/

() => {};
a => {};
a => a;
a => {'\n'};
a.then(foo => {});
a.then(foo => { if (true) {} });
(a, b, c) => a;
(a = 10) => a;
([a, b]) => a;
({a, b}) => a;

requireForBlockBody

Examples of incorrect code for the { "requireForBlockBody": true } option:

/*eslint arrow-parens: [2, "as-needed", { "requireForBlockBody": true }]*/
/*eslint-env es6*/

(a) => a;
a => {};
a => {'\n'};
a.map((x) => x * x);
a.map(x => {
  return x * x;
});
a.then(foo => {});

Examples of correct code for the { "requireForBlockBody": true } option:

/*eslint arrow-parens: [2, "as-needed", { "requireForBlockBody": true }]*/
/*eslint-env es6*/

(a) => {};
(a) => {'\n'};
a => ({});
() => {};
a => a;
a.then((foo) => {});
a.then((foo) => { if (true) {} });
a((foo) => { if (true) {} });
(a, b, c) => a;
(a = 10) => a;
([a, b]) => a;
({a, b}) => a;

Further Reading

Unexpected parentheses around single function argument having a body with no curly braces.
Open

    setState((state) => ({

Require parens in arrow function arguments (arrow-parens)

Arrow functions can omit parentheses when they have exactly one parameter. In all other cases the parameter(s) must be wrapped in parentheses. This rule enforces the consistent use of parentheses in arrow functions.

Rule Details

This rule enforces parentheses around arrow function parameters regardless of arity. For example:

/*eslint-env es6*/

// Bad
a => {}

// Good
(a) => {}

Following this style will help you find arrow functions (=>) which may be mistakenly included in a condition when a comparison such as >= was the intent.

/*eslint-env es6*/

// Bad
if (a => 2) {
}

// Good
if (a >= 2) {
}

The rule can also be configured to discourage the use of parens when they are not required:

/*eslint-env es6*/

// Bad
(a) => {}

// Good
a => {}

Options

This rule has a string option and an object one.

String options are:

  • "always" (default) requires parens around arguments in all cases.
  • "as-needed" allows omitting parens when there is only one argument.

Object properties for variants of the "as-needed" option:

  • "requireForBlockBody": true modifies the as-needed rule in order to require parens if the function body is in an instructions block (surrounded by braces).

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint arrow-parens: ["error", "always"]*/
/*eslint-env es6*/

a => {};
a => a;
a => {'\n'};
a.then(foo => {});
a.then(foo => a);
a(foo => { if (true) {} });

Examples of correct code for this rule with the default "always" option:

/*eslint arrow-parens: ["error", "always"]*/
/*eslint-env es6*/

() => {};
(a) => {};
(a) => a;
(a) => {'\n'}
a.then((foo) => {});
a.then((foo) => { if (true) {} });

If Statements

One of benefits of this option is that it prevents the incorrect use of arrow functions in conditionals:

/*eslint-env es6*/

var a = 1;
var b = 2;
// ...
if (a => b) {
 console.log('bigger');
} else {
 console.log('smaller');
}
// outputs 'bigger', not smaller as expected

The contents of the if statement is an arrow function, not a comparison.

If the arrow function is intentional, it should be wrapped in parens to remove ambiguity.

/*eslint-env es6*/

var a = 1;
var b = 0;
// ...
if ((a) => b) {
 console.log('truthy value returned');
} else {
 console.log('falsey value returned');
}
// outputs 'truthy value returned'

The following is another example of this behavior:

/*eslint-env es6*/

var a = 1, b = 2, c = 3, d = 4;
var f = a => b ? c: d;
// f = ?

f is an arrow function which takes a as an argument and returns the result of b ? c: d.

This should be rewritten like so:

/*eslint-env es6*/

var a = 1, b = 2, c = 3, d = 4;
var f = (a) => b ? c: d;

as-needed

Examples of incorrect code for this rule with the "as-needed" option:

/*eslint arrow-parens: ["error", "as-needed"]*/
/*eslint-env es6*/

(a) => {};
(a) => a;
(a) => {'\n'};
a.then((foo) => {});
a.then((foo) => a);
a((foo) => { if (true) {} });

Examples of correct code for this rule with the "as-needed" option:

/*eslint arrow-parens: ["error", "as-needed"]*/
/*eslint-env es6*/

() => {};
a => {};
a => a;
a => {'\n'};
a.then(foo => {});
a.then(foo => { if (true) {} });
(a, b, c) => a;
(a = 10) => a;
([a, b]) => a;
({a, b}) => a;

requireForBlockBody

Examples of incorrect code for the { "requireForBlockBody": true } option:

/*eslint arrow-parens: [2, "as-needed", { "requireForBlockBody": true }]*/
/*eslint-env es6*/

(a) => a;
a => {};
a => {'\n'};
a.map((x) => x * x);
a.map(x => {
  return x * x;
});
a.then(foo => {});

Examples of correct code for the { "requireForBlockBody": true } option:

/*eslint arrow-parens: [2, "as-needed", { "requireForBlockBody": true }]*/
/*eslint-env es6*/

(a) => {};
(a) => {'\n'};
a => ({});
() => {};
a => a;
a.then((foo) => {});
a.then((foo) => { if (true) {} });
a((foo) => { if (true) {} });
(a, b, c) => a;
(a = 10) => a;
([a, b]) => a;
({a, b}) => a;

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        Object.entries(data.MiqEvent.group_names).forEach((entry) => {
          const [key, value] = entry;
          policyGroupNames.push({ label: value, value: key });
        });
app/javascript/components/timeline-options/timeline-options.jsx on lines 37..40

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 67.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        Object.entries(data.EmsEvent.group_names).forEach((entry) => {
          const [key, value] = entry;
          managementGroupNames.push({ label: value, value: key });
        });
app/javascript/components/timeline-options/timeline-options.jsx on lines 47..50

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 67.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

prop-types import should occur before import of @@ddf
Open

import PropTypes from 'prop-types';

For more information visit Source: http://eslint.org/docs/rules/

There are no issues that match your filters.

Category
Status