Showing 65 of 67 total issues
Function tputChart
has 126 lines of code (exceeds 50 allowed). Consider refactoring. Open
my.charts.tput.tputChart = (function (m) {
var margin = {
top: 20,
right: 20,
bottom: 40,
Function has too many statements (44). Maximum allowed is 30. Open
JT = (function (my) {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function redraw
has 96 lines of code (exceeds 50 allowed). Consider refactoring. Open
m.redraw = function() {
var width = size.width - margin.left - margin.right;
var height = size.height - margin.top - margin.bottom;
Function has too many statements (40). Maximum allowed is 30. Open
m.redraw = function() {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function reset
has 85 lines of code (exceeds 50 allowed). Consider refactoring. Open
m.reset = function() {
d3.select("#chartToptalk").selectAll("svg").remove();
svg = d3.select("#chartToptalk")
Function reset
has 80 lines of code (exceeds 50 allowed). Consider refactoring. Open
m.reset = function() {
d3.select("#packetGapContainer").selectAll("svg").remove();
svg = d3.select("#packetGapContainer")
Function has a complexity of 10. Open
sock.onmessage = function(evt) {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function has a complexity of 9. Open
my.core.processTopTalkMsg = function (msg) {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function has a complexity of 9. Open
my.core.processDataMsg = function (stats, interval) {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function has too many statements (32). Maximum allowed is 30. Open
JT = (function (my) {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function reset
has 69 lines of code (exceeds 50 allowed). Consider refactoring. Open
m.reset = function(selectedSeries) {
d3.select("#chartThroughput").selectAll("svg").remove();
svg = d3.select("#chartThroughput")
Identical blocks of code found in 2 locations. Consider refactoring. Open
graph.append("text")
.attr("class", "x label")
.attr("text-anchor", "middle")
.attr("x", width/2)
.attr("y", height + 15 + 0.5 * margin.bottom)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 70.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
graph.append("text")
.attr("class", "x label")
.attr("text-anchor", "middle")
.attr("x", width/2)
.attr("y", height + 15 + 0.5 * margin.bottom)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 70.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Function Program
has 66 lines of code (exceeds 50 allowed). Consider refactoring. Open
var Program = function (json) {
this.id = "program_" + nextPID++;
this.name = json.name;
this.timeoutHandles = {};
this.impairments = json.impairments;
Identical blocks of code found in 2 locations. Consider refactoring. Open
svg.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
svg.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 3 locations. Consider refactoring. Open
var graph = svg.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 48.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 3 locations. Consider refactoring. Open
var graph = svg.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 48.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 3 locations. Consider refactoring. Open
var graph = svg.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 48.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Missing radix parameter. Open
'delay': parseInt($("#delay").val()),
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.