django/django

View on GitHub
docs/topics/db/models.txt

Summary

Maintainability
Test Coverage
======
Models
======

.. module:: django.db.models

A model is the single, definitive source of information about your data. It
contains the essential fields and behaviors of the data you're storing.
Generally, each model maps to a single database table.

The basics:

* Each model is a Python class that subclasses
  :class:`django.db.models.Model`.

* Each attribute of the model represents a database field.

* With all of this, Django gives you an automatically-generated
  database-access API; see :doc:`/topics/db/queries`.


Quick example
=============

This example model defines a ``Person``, which has a ``first_name`` and
``last_name``::

    from django.db import models


    class Person(models.Model):
        first_name = models.CharField(max_length=30)
        last_name = models.CharField(max_length=30)

``first_name`` and ``last_name`` are fields_ of the model. Each field is
specified as a class attribute, and each attribute maps to a database column.

The above ``Person`` model would create a database table like this:

.. code-block:: sql

    CREATE TABLE myapp_person (
        "id" bigint NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
        "first_name" varchar(30) NOT NULL,
        "last_name" varchar(30) NOT NULL
    );

Some technical notes:

* The name of the table, ``myapp_person``, is automatically derived from
  some model metadata but can be overridden. See :ref:`table-names` for more
  details.

* An ``id`` field is added automatically, but this behavior can be
  overridden. See :ref:`automatic-primary-key-fields`.

* The ``CREATE TABLE`` SQL in this example is formatted using PostgreSQL
  syntax, but it's worth noting Django uses SQL tailored to the database
  backend specified in your :doc:`settings file </topics/settings>`.

Using models
============

Once you have defined your models, you need to tell Django you're going to *use*
those models. Do this by editing your settings file and changing the
:setting:`INSTALLED_APPS` setting to add the name of the module that contains
your ``models.py``.

For example, if the models for your application live in the module
``myapp.models`` (the package structure that is created for an
application by the :djadmin:`manage.py startapp <startapp>` script),
:setting:`INSTALLED_APPS` should read, in part::

    INSTALLED_APPS = [
        # ...
        "myapp",
        # ...
    ]

When you add new apps to :setting:`INSTALLED_APPS`, be sure to run
:djadmin:`manage.py migrate <migrate>`, optionally making migrations
for them first with :djadmin:`manage.py makemigrations <makemigrations>`.

Fields
======

The most important part of a model -- and the only required part of a model --
is the list of database fields it defines. Fields are specified by class
attributes. Be careful not to choose field names that conflict with the
:doc:`models API </ref/models/instances>` like ``clean``, ``save``, or
``delete``.

Example::

    from django.db import models


    class Musician(models.Model):
        first_name = models.CharField(max_length=50)
        last_name = models.CharField(max_length=50)
        instrument = models.CharField(max_length=100)


    class Album(models.Model):
        artist = models.ForeignKey(Musician, on_delete=models.CASCADE)
        name = models.CharField(max_length=100)
        release_date = models.DateField()
        num_stars = models.IntegerField()

Field types
-----------

Each field in your model should be an instance of the appropriate
:class:`~django.db.models.Field` class. Django uses the field class types to
determine a few things:

* The column type, which tells the database what kind of data to store (e.g.
  ``INTEGER``, ``VARCHAR``, ``TEXT``).

* The default HTML :doc:`widget </ref/forms/widgets>` to use when rendering a form
  field (e.g. ``<input type="text">``, ``<select>``).

* The minimal validation requirements, used in Django's admin and in
  automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list
in the :ref:`model field reference <model-field-types>`. You can easily write
your own fields if Django's built-in ones don't do the trick; see
:doc:`/howto/custom-model-fields`.

Field options
-------------

Each field takes a certain set of field-specific arguments (documented in the
:ref:`model field reference <model-field-types>`). For example,
:class:`~django.db.models.CharField` (and its subclasses) require a
:attr:`~django.db.models.CharField.max_length` argument which specifies the size
of the ``VARCHAR`` database field used to store the data.

There's also a set of common arguments available to all field types. All are
optional. They're fully explained in the :ref:`reference
<common-model-field-options>`, but here's a quick summary of the most often-used
ones:

:attr:`~Field.null`
    If ``True``, Django will store empty values as ``NULL`` in the database.
    Default is ``False``.

:attr:`~Field.blank`
    If ``True``, the field is allowed to be blank. Default is ``False``.

    Note that this is different than :attr:`~Field.null`.
    :attr:`~Field.null` is purely database-related, whereas
    :attr:`~Field.blank` is validation-related. If a field has
    :attr:`blank=True <Field.blank>`, form validation will
    allow entry of an empty value. If a field has :attr:`blank=False
    <Field.blank>`, the field will be required.

:attr:`~Field.choices`
    A :term:`sequence` of 2-value tuples, a :term:`mapping`, an
    :ref:`enumeration type <field-choices-enum-types>`, or a callable (that
    expects no arguments and returns any of the previous formats), to use as
    choices for this field. If this is given, the default form widget will be a
    select box instead of the standard text field and will limit choices to the
    choices given.

    A choices list looks like this::

        YEAR_IN_SCHOOL_CHOICES = [
            ("FR", "Freshman"),
            ("SO", "Sophomore"),
            ("JR", "Junior"),
            ("SR", "Senior"),
            ("GR", "Graduate"),
        ]

    .. note::
        A new migration is created each time the order of ``choices`` changes.

    The first element in each tuple is the value that will be stored in the
    database. The second element is displayed by the field's form widget.

    Given a model instance, the display value for a field with ``choices`` can
    be accessed using the :meth:`~django.db.models.Model.get_FOO_display`
    method. For example::

        from django.db import models


        class Person(models.Model):
            SHIRT_SIZES = {
                "S": "Small",
                "M": "Medium",
                "L": "Large",
            }
            name = models.CharField(max_length=60)
            shirt_size = models.CharField(max_length=1, choices=SHIRT_SIZES)

    .. code-block:: pycon

        >>> p = Person(name="Fred Flintstone", shirt_size="L")
        >>> p.save()
        >>> p.shirt_size
        'L'
        >>> p.get_shirt_size_display()
        'Large'

    You can also use enumeration classes to define ``choices`` in a concise
    way::

        from django.db import models


        class Runner(models.Model):
            MedalType = models.TextChoices("MedalType", "GOLD SILVER BRONZE")
            name = models.CharField(max_length=60)
            medal = models.CharField(blank=True, choices=MedalType, max_length=10)

    Further examples are available in the :ref:`model field reference
    <field-choices>`.

    .. versionchanged:: 5.0

        Support for mappings and callables was added.

:attr:`~Field.default`
    The default value for the field. This can be a value or a callable
    object. If callable it will be called every time a new object is
    created.

:attr:`~Field.help_text`
    Extra "help" text to be displayed with the form widget. It's useful for
    documentation even if your field isn't used on a form.

:attr:`~Field.primary_key`
    If ``True``, this field is the primary key for the model.

    If you don't specify :attr:`primary_key=True <Field.primary_key>` for
    any fields in your model, Django will automatically add an
    :class:`IntegerField` to hold the primary key, so you don't need to set
    :attr:`primary_key=True <Field.primary_key>` on any of your fields
    unless you want to override the default primary-key behavior. For more,
    see :ref:`automatic-primary-key-fields`.

    The primary key field is read-only. If you change the value of the primary
    key on an existing object and then save it, a new object will be created
    alongside the old one. For example::

        from django.db import models


        class Fruit(models.Model):
            name = models.CharField(max_length=100, primary_key=True)

    .. code-block:: pycon

        >>> fruit = Fruit.objects.create(name="Apple")
        >>> fruit.name = "Pear"
        >>> fruit.save()
        >>> Fruit.objects.values_list("name", flat=True)
        <QuerySet ['Apple', 'Pear']>

:attr:`~Field.unique`
    If ``True``, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full
details can be found in the :ref:`common model field option reference
<common-model-field-options>`.

.. _automatic-primary-key-fields:

Automatic primary key fields
----------------------------

By default, Django gives each model an auto-incrementing primary key with the
type specified per app in :attr:`AppConfig.default_auto_field
<django.apps.AppConfig.default_auto_field>` or globally in the
:setting:`DEFAULT_AUTO_FIELD` setting. For example::

    id = models.BigAutoField(primary_key=True)

If you'd like to specify a custom primary key, specify
:attr:`primary_key=True <Field.primary_key>` on one of your fields. If Django
sees you've explicitly set :attr:`Field.primary_key`, it won't add the automatic
``id`` column.

Each model requires exactly one field to have :attr:`primary_key=True
<Field.primary_key>` (either explicitly declared or automatically added).

.. _verbose-field-names:

Verbose field names
-------------------

Each field type, except for :class:`~django.db.models.ForeignKey`,
:class:`~django.db.models.ManyToManyField` and
:class:`~django.db.models.OneToOneField`, takes an optional first positional
argument -- a verbose name. If the verbose name isn't given, Django will
automatically create it using the field's attribute name, converting underscores
to spaces.

In this example, the verbose name is ``"person's first name"``::

    first_name = models.CharField("person's first name", max_length=30)

In this example, the verbose name is ``"first name"``::

    first_name = models.CharField(max_length=30)

:class:`~django.db.models.ForeignKey`,
:class:`~django.db.models.ManyToManyField` and
:class:`~django.db.models.OneToOneField` require the first argument to be a
model class, so use the :attr:`~Field.verbose_name` keyword argument::

    poll = models.ForeignKey(
        Poll,
        on_delete=models.CASCADE,
        verbose_name="the related poll",
    )
    sites = models.ManyToManyField(Site, verbose_name="list of sites")
    place = models.OneToOneField(
        Place,
        on_delete=models.CASCADE,
        verbose_name="related place",
    )

The convention is not to capitalize the first letter of the
:attr:`~Field.verbose_name`. Django will automatically capitalize the first
letter where it needs to.

Relationships
-------------

Clearly, the power of relational databases lies in relating tables to each
other. Django offers ways to define the three most common types of database
relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships
~~~~~~~~~~~~~~~~~~~~~~~~~

To define a many-to-one relationship, use :class:`django.db.models.ForeignKey`.
You use it just like any other :class:`~django.db.models.Field` type: by
including it as a class attribute of your model.

:class:`~django.db.models.ForeignKey` requires a positional argument: the class
to which the model is related.

For example, if a ``Car`` model has a ``Manufacturer`` -- that is, a
``Manufacturer`` makes multiple cars but each ``Car`` only has one
``Manufacturer`` -- use the following definitions::

    from django.db import models


    class Manufacturer(models.Model):
        # ...
        pass


    class Car(models.Model):
        manufacturer = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)
        # ...

You can also create :ref:`recursive relationships <recursive-relationships>` (an
object with a many-to-one relationship to itself) and :ref:`relationships to
models not yet defined <lazy-relationships>`; see :ref:`the model field
reference <ref-foreignkey>` for details.

It's suggested, but not required, that the name of a
:class:`~django.db.models.ForeignKey` field (``manufacturer`` in the example
above) be the name of the model, lowercase. You can call the field whatever you
want. For example::

    class Car(models.Model):
        company_that_makes_it = models.ForeignKey(
            Manufacturer,
            on_delete=models.CASCADE,
        )
        # ...

.. seealso::

    :class:`~django.db.models.ForeignKey` fields accept a number of extra
    arguments which are explained in :ref:`the model field reference
    <foreign-key-arguments>`. These options help define how the relationship
    should work; all are optional.

    For details on accessing backwards-related objects, see the
    :ref:`Following relationships backward example <backwards-related-objects>`.

    For sample code, see the :doc:`Many-to-one relationship model example
    </topics/db/examples/many_to_one>`.


Many-to-many relationships
~~~~~~~~~~~~~~~~~~~~~~~~~~

To define a many-to-many relationship, use
:class:`~django.db.models.ManyToManyField`. You use it just like any other
:class:`~django.db.models.Field` type: by including it as a class attribute of
your model.

:class:`~django.db.models.ManyToManyField` requires a positional argument: the
class to which the model is related.

For example, if a ``Pizza`` has multiple ``Topping`` objects -- that is, a
``Topping`` can be on multiple pizzas and each ``Pizza`` has multiple toppings
-- here's how you'd represent that::

    from django.db import models


    class Topping(models.Model):
        # ...
        pass


    class Pizza(models.Model):
        # ...
        toppings = models.ManyToManyField(Topping)

As with :class:`~django.db.models.ForeignKey`, you can also create
:ref:`recursive relationships <recursive-relationships>` (an object with a
many-to-many relationship to itself) and :ref:`relationships to models not yet
defined <lazy-relationships>`.

It's suggested, but not required, that the name of a
:class:`~django.db.models.ManyToManyField` (``toppings`` in the example above)
be a plural describing the set of related model objects.

It doesn't matter which model has the
:class:`~django.db.models.ManyToManyField`, but you should only put it in one
of the models -- not both.

Generally, :class:`~django.db.models.ManyToManyField` instances should go in
the object that's going to be edited on a form. In the above example,
``toppings`` is in ``Pizza`` (rather than ``Topping`` having a ``pizzas``
:class:`~django.db.models.ManyToManyField` ) because it's more natural to think
about a pizza having toppings than a topping being on multiple pizzas. The way
it's set up above, the ``Pizza`` form would let users select the toppings.

.. seealso::

    See the :doc:`Many-to-many relationship model example
    </topics/db/examples/many_to_many>` for a full example.

:class:`~django.db.models.ManyToManyField` fields also accept a number of
extra arguments which are explained in :ref:`the model field reference
<manytomany-arguments>`. These options help define how the relationship
should work; all are optional.

.. _intermediary-manytomany:

Extra fields on many-to-many relationships
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When you're only dealing with many-to-many relationships such as mixing and
matching pizzas and toppings, a standard
:class:`~django.db.models.ManyToManyField` is all you need. However, sometimes
you may need to associate data with the relationship between two models.

For example, consider the case of an application tracking the musical groups
which musicians belong to. There is a many-to-many relationship between a person
and the groups of which they are a member, so you could use a
:class:`~django.db.models.ManyToManyField` to represent this relationship.
However, there is a lot of detail about the membership that you might want to
collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used
to govern the many-to-many relationship. You can then put extra fields on the
intermediate model. The intermediate model is associated with the
:class:`~django.db.models.ManyToManyField` using the
:attr:`through <ManyToManyField.through>` argument to point to the model
that will act as an intermediary. For our musician example, the code would look
something like this::

    from django.db import models


    class Person(models.Model):
        name = models.CharField(max_length=128)

        def __str__(self):
            return self.name


    class Group(models.Model):
        name = models.CharField(max_length=128)
        members = models.ManyToManyField(Person, through="Membership")

        def __str__(self):
            return self.name


    class Membership(models.Model):
        person = models.ForeignKey(Person, on_delete=models.CASCADE)
        group = models.ForeignKey(Group, on_delete=models.CASCADE)
        date_joined = models.DateField()
        invite_reason = models.CharField(max_length=64)

When you set up the intermediary model, you explicitly specify foreign
keys to the models that are involved in the many-to-many relationship. This
explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

* Your intermediate model must contain one - and *only* one - foreign key
  to the source model (this would be ``Group`` in our example), or you must
  explicitly specify the foreign keys Django should use for the relationship
  using :attr:`ManyToManyField.through_fields <ManyToManyField.through_fields>`.
  If you have more than one foreign key and ``through_fields`` is not
  specified, a validation error will be raised. A similar restriction applies
  to the foreign key to the target model (this would be ``Person`` in our
  example).

* For a model which has a many-to-many relationship to itself through an
  intermediary model, two foreign keys to the same model are permitted, but
  they will be treated as the two (different) sides of the many-to-many
  relationship. If there are *more* than two foreign keys though, you
  must also specify ``through_fields`` as above, or a validation error
  will be raised.

Now that you have set up your :class:`~django.db.models.ManyToManyField` to use
your intermediary model (``Membership``, in this case), you're ready to start
creating some many-to-many relationships. You do this by creating instances of
the intermediate model:

.. code-block:: pycon

    >>> ringo = Person.objects.create(name="Ringo Starr")
    >>> paul = Person.objects.create(name="Paul McCartney")
    >>> beatles = Group.objects.create(name="The Beatles")
    >>> m1 = Membership(
    ...     person=ringo,
    ...     group=beatles,
    ...     date_joined=date(1962, 8, 16),
    ...     invite_reason="Needed a new drummer.",
    ... )
    >>> m1.save()
    >>> beatles.members.all()
    <QuerySet [<Person: Ringo Starr>]>
    >>> ringo.group_set.all()
    <QuerySet [<Group: The Beatles>]>
    >>> m2 = Membership.objects.create(
    ...     person=paul,
    ...     group=beatles,
    ...     date_joined=date(1960, 8, 1),
    ...     invite_reason="Wanted to form a band.",
    ... )
    >>> beatles.members.all()
    <QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>]>

You can also use :meth:`~django.db.models.fields.related.RelatedManager.add`,
:meth:`~django.db.models.fields.related.RelatedManager.create`, or
:meth:`~django.db.models.fields.related.RelatedManager.set` to create
relationships, as long as you specify ``through_defaults`` for any required
fields:

.. code-block:: pycon

    >>> beatles.members.add(john, through_defaults={"date_joined": date(1960, 8, 1)})
    >>> beatles.members.create(
    ...     name="George Harrison", through_defaults={"date_joined": date(1960, 8, 1)}
    ... )
    >>> beatles.members.set(
    ...     [john, paul, ringo, george], through_defaults={"date_joined": date(1960, 8, 1)}
    ... )

You may prefer to create instances of the intermediate model directly.

If the custom through table defined by the intermediate model does not enforce
uniqueness on the ``(model1, model2)`` pair, allowing multiple values, the
:meth:`~django.db.models.fields.related.RelatedManager.remove` call will
remove all intermediate model instances:

.. code-block:: pycon

    >>> Membership.objects.create(
    ...     person=ringo,
    ...     group=beatles,
    ...     date_joined=date(1968, 9, 4),
    ...     invite_reason="You've been gone for a month and we miss you.",
    ... )
    >>> beatles.members.all()
    <QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>, <Person: Ringo Starr>]>
    >>> # This deletes both of the intermediate model instances for Ringo Starr
    >>> beatles.members.remove(ringo)
    >>> beatles.members.all()
    <QuerySet [<Person: Paul McCartney>]>

The :meth:`~django.db.models.fields.related.RelatedManager.clear`
method can be used to remove all many-to-many relationships for an instance:

.. code-block:: pycon

    >>> # Beatles have broken up
    >>> beatles.members.clear()
    >>> # Note that this deletes the intermediate model instances
    >>> Membership.objects.all()
    <QuerySet []>

Once you have established the many-to-many relationships, you can issue
queries. Just as with normal many-to-many relationships, you can query using
the attributes of the many-to-many-related model:

.. code-block:: pycon

    # Find all the groups with a member whose name starts with 'Paul'
    >>> Group.objects.filter(members__name__startswith="Paul")
    <QuerySet [<Group: The Beatles>]>

As you are using an intermediate model, you can also query on its attributes:

.. code-block:: pycon

    # Find all the members of the Beatles that joined after 1 Jan 1961
    >>> Person.objects.filter(
    ...     group__name="The Beatles", membership__date_joined__gt=date(1961, 1, 1)
    ... )
    <QuerySet [<Person: Ringo Starr]>

If you need to access a membership's information you may do so by directly
querying the ``Membership`` model:

.. code-block:: pycon

    >>> ringos_membership = Membership.objects.get(group=beatles, person=ringo)
    >>> ringos_membership.date_joined
    datetime.date(1962, 8, 16)
    >>> ringos_membership.invite_reason
    'Needed a new drummer.'

Another way to access the same information is by querying the
:ref:`many-to-many reverse relationship<m2m-reverse-relationships>` from a
``Person`` object:

.. code-block:: pycon

    >>> ringos_membership = ringo.membership_set.get(group=beatles)
    >>> ringos_membership.date_joined
    datetime.date(1962, 8, 16)
    >>> ringos_membership.invite_reason
    'Needed a new drummer.'

One-to-one relationships
~~~~~~~~~~~~~~~~~~~~~~~~

To define a one-to-one relationship, use
:class:`~django.db.models.OneToOneField`. You use it just like any other
``Field`` type: by including it as a class attribute of your model.

This is most useful on the primary key of an object when that object "extends"
another object in some way.

:class:`~django.db.models.OneToOneField` requires a positional argument: the
class to which the model is related.

For example, if you were building a database of "places", you would
build pretty standard stuff such as address, phone number, etc. in the
database. Then, if you wanted to build a database of restaurants on
top of the places, instead of repeating yourself and replicating those
fields in the ``Restaurant`` model, you could make ``Restaurant`` have
a :class:`~django.db.models.OneToOneField` to ``Place`` (because a
restaurant "is a" place; in fact, to handle this you'd typically use
:ref:`inheritance <model-inheritance>`, which involves an implicit
one-to-one relation).

As with :class:`~django.db.models.ForeignKey`, a :ref:`recursive relationship
<recursive-relationships>` can be defined and :ref:`references to as-yet
undefined models <lazy-relationships>` can be made.

.. seealso::

    See the :doc:`One-to-one relationship model example
    </topics/db/examples/one_to_one>` for a full example.

:class:`~django.db.models.OneToOneField` fields also accept an optional
:attr:`~django.db.models.OneToOneField.parent_link` argument.

:class:`~django.db.models.OneToOneField` classes used to automatically become
the primary key on a model. This is no longer true (although you can manually
pass in the :attr:`~django.db.models.Field.primary_key` argument if you like).
Thus, it's now possible to have multiple fields of type
:class:`~django.db.models.OneToOneField` on a single model.

Models across files
-------------------

It's perfectly OK to relate a model to one from another app. To do this, import
the related model at the top of the file where your model is defined. Then,
refer to the other model class wherever needed. For example::

    from django.db import models
    from geography.models import ZipCode


    class Restaurant(models.Model):
        # ...
        zip_code = models.ForeignKey(
            ZipCode,
            on_delete=models.SET_NULL,
            blank=True,
            null=True,
        )

Field name restrictions
-----------------------

Django places some restrictions on model field names:

#. A field name cannot be a Python reserved word, because that would result
   in a Python syntax error. For example:

   .. code-block:: text

       class Example(models.Model):
           pass = models.IntegerField() # 'pass' is a reserved word!

#. A field name cannot contain more than one underscore in a row, due to
   the way Django's query lookup syntax works. For example::

       class Example(models.Model):
           foo__bar = models.IntegerField()  # 'foo__bar' has two underscores!

#. A field name cannot end with an underscore, for similar reasons.

These limitations can be worked around, though, because your field name doesn't
necessarily have to match your database column name. See the
:attr:`~Field.db_column` option.

SQL reserved words, such as ``join``, ``where`` or ``select``, *are* allowed as
model field names, because Django escapes all database table names and column
names in every underlying SQL query. It uses the quoting syntax of your
particular database engine.

Custom field types
------------------

If one of the existing model fields cannot be used to fit your purposes, or if
you wish to take advantage of some less common database column types, you can
create your own field class. Full coverage of creating your own fields is
provided in :doc:`/howto/custom-model-fields`.

.. _meta-options:

``Meta`` options
================

Give your model metadata by using an inner ``class Meta``, like so::

    from django.db import models


    class Ox(models.Model):
        horn_length = models.IntegerField()

        class Meta:
            ordering = ["horn_length"]
            verbose_name_plural = "oxen"

Model metadata is "anything that's not a field", such as ordering options
(:attr:`~Options.ordering`), database table name (:attr:`~Options.db_table`), or
human-readable singular and plural names (:attr:`~Options.verbose_name` and
:attr:`~Options.verbose_name_plural`). None are required, and adding ``class
Meta`` to a model is completely optional.

A complete list of all possible ``Meta`` options can be found in the :doc:`model
option reference </ref/models/options>`.

.. _model-attributes:

Model attributes
================

``objects``
    The most important attribute of a model is the
    :class:`~django.db.models.Manager`. It's the interface through which
    database query operations are provided to Django models and is used to
    :ref:`retrieve the instances <retrieving-objects>` from the database. If no
    custom ``Manager`` is defined, the default name is
    :attr:`~django.db.models.Model.objects`. Managers are only accessible via
    model classes, not the model instances.

.. _model-methods:

Model methods
=============

Define custom methods on a model to add custom "row-level" functionality to your
objects. Whereas :class:`~django.db.models.Manager` methods are intended to do
"table-wide" things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place -- the
model.

For example, this model has a few custom methods::

    from django.db import models


    class Person(models.Model):
        first_name = models.CharField(max_length=50)
        last_name = models.CharField(max_length=50)
        birth_date = models.DateField()

        def baby_boomer_status(self):
            "Returns the person's baby-boomer status."
            import datetime

            if self.birth_date < datetime.date(1945, 8, 1):
                return "Pre-boomer"
            elif self.birth_date < datetime.date(1965, 1, 1):
                return "Baby boomer"
            else:
                return "Post-boomer"

        @property
        def full_name(self):
            "Returns the person's full name."
            return f"{self.first_name} {self.last_name}"

The last method in this example is a :term:`property`.

The :doc:`model instance reference </ref/models/instances>` has a complete list
of :ref:`methods automatically given to each model <model-instance-methods>`.
You can override most of these -- see `overriding predefined model methods`_,
below -- but there are a couple that you'll almost always want to define:

:meth:`~Model.__str__`
    A Python "magic method" that returns a string representation of any
    object. This is what Python and Django will use whenever a model
    instance needs to be coerced and displayed as a plain string. Most
    notably, this happens when you display an object in an interactive
    console or in the admin.

    You'll always want to define this method; the default isn't very helpful
    at all.

:meth:`~Model.get_absolute_url`
    This tells Django how to calculate the URL for an object. Django uses
    this in its admin interface, and any time it needs to figure out a URL
    for an object.

    Any object that has a URL that uniquely identifies it should define this
    method.

.. _overriding-model-methods:

Overriding predefined model methods
-----------------------------------

There's another set of :ref:`model methods <model-instance-methods>` that
encapsulate a bunch of database behavior that you'll want to customize. In
particular you'll often want to change the way :meth:`~Model.save` and
:meth:`~Model.delete` work.

You're free to override these methods (and any other model method) to alter
behavior.

A classic use-case for overriding the built-in methods is if you want something
to happen whenever you save an object. For example (see
:meth:`~Model.save` for documentation of the parameters it accepts)::

    from django.db import models


    class Blog(models.Model):
        name = models.CharField(max_length=100)
        tagline = models.TextField()

        def save(self, **kwargs):
            do_something()
            super().save(**kwargs)  # Call the "real" save() method.
            do_something_else()

You can also prevent saving::

    from django.db import models


    class Blog(models.Model):
        name = models.CharField(max_length=100)
        tagline = models.TextField()

        def save(self, **kwargs):
            if self.name == "Yoko Ono's blog":
                return  # Yoko shall never have her own blog!
            else:
                super().save(**kwargs)  # Call the "real" save() method.

It's important to remember to call the superclass method -- that's
that ``super().save(**kwargs)`` business -- to ensure that the object still
gets saved into the database. If you forget to call the superclass method, the
default behavior won't happen and the database won't get touched.

It's also important that you pass through the arguments that can be
passed to the model method -- that's what the ``**kwargs`` bit does. Django
will, from time to time, extend the capabilities of built-in model methods,
adding new keyword arguments. If you use ``**kwargs`` in your method
definitions, you are guaranteed that your code will automatically support those
arguments when they are added.

If you wish to update a field value in the :meth:`~Model.save` method, you may
also want to have this field added to the ``update_fields`` keyword argument.
This will ensure the field is saved when ``update_fields`` is specified. For
example::

    from django.db import models
    from django.utils.text import slugify


    class Blog(models.Model):
        name = models.CharField(max_length=100)
        slug = models.TextField()

        def save(self, **kwargs):
            self.slug = slugify(self.name)
            if (
                update_fields := kwargs.get("update_fields")
            ) is not None and "name" in update_fields:
                update_fields = {"slug"}.union(update_fields)
            super().save(**kwargs)

See :ref:`ref-models-update-fields` for more details.

.. admonition:: Overridden model methods are not called on bulk operations

    Note that the :meth:`~Model.delete()` method for an object is not
    necessarily called when :ref:`deleting objects in bulk using a
    QuerySet <topics-db-queries-delete>` or as a result of a :attr:`cascading
    delete <django.db.models.ForeignKey.on_delete>`. To ensure customized
    delete logic gets executed, you can use
    :data:`~django.db.models.signals.pre_delete` and/or
    :data:`~django.db.models.signals.post_delete` signals.

    Unfortunately, there isn't a workaround when
    :meth:`creating<django.db.models.query.QuerySet.bulk_create>` or
    :meth:`updating<django.db.models.query.QuerySet.update>` objects in bulk,
    since none of :meth:`~Model.save()`,
    :data:`~django.db.models.signals.pre_save`, and
    :data:`~django.db.models.signals.post_save` are called.

Executing custom SQL
--------------------

Another common pattern is writing custom SQL statements in model methods and
module-level methods. For more details on using raw SQL, see the documentation
on :doc:`using raw SQL</topics/db/sql>`.

.. _model-inheritance:

Model inheritance
=================

Model inheritance in Django works almost identically to the way normal
class inheritance works in Python, but the basics at the beginning of the page
should still be followed. That means the base class should subclass
:class:`django.db.models.Model`.

The only decision you have to make is whether you want the parent models to be
models in their own right (with their own database tables), or if the parents
are just holders of common information that will only be visible through the
child models.

There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that
   you don't want to have to type out for each child model. This class isn't
   going to ever be used in isolation, so :ref:`abstract-base-classes` are
   what you're after.
2. If you're subclassing an existing model (perhaps something from another
   application entirely) and want each model to have its own database table,
   :ref:`multi-table-inheritance` is the way to go.
3. Finally, if you only want to modify the Python-level behavior of a model,
   without changing the models fields in any way, you can use
   :ref:`proxy-models`.

.. _abstract-base-classes:

Abstract base classes
---------------------

Abstract base classes are useful when you want to put some common
information into a number of other models. You write your base class
and put ``abstract=True`` in the :ref:`Meta <meta-options>`
class. This model will then not be used to create any database
table. Instead, when it is used as a base class for other models, its
fields will be added to those of the child class.

An example::

    from django.db import models


    class CommonInfo(models.Model):
        name = models.CharField(max_length=100)
        age = models.PositiveIntegerField()

        class Meta:
            abstract = True


    class Student(CommonInfo):
        home_group = models.CharField(max_length=5)

The ``Student`` model will have three fields: ``name``, ``age`` and
``home_group``. The ``CommonInfo`` model cannot be used as a normal Django
model, since it is an abstract base class. It does not generate a database
table or have a manager, and cannot be instantiated or saved directly.

Fields inherited from abstract base classes can be overridden with another
field or value, or be removed with ``None``.

For many uses, this type of model inheritance will be exactly what you want.
It provides a way to factor out common information at the Python level, while
still only creating one database table per child model at the database level.

``Meta`` inheritance
~~~~~~~~~~~~~~~~~~~~

When an abstract base class is created, Django makes any :ref:`Meta <meta-options>`
inner class you declared in the base class available as an
attribute. If a child class does not declare its own :ref:`Meta <meta-options>`
class, it will inherit the parent's :ref:`Meta <meta-options>`. If the child wants to
extend the parent's :ref:`Meta <meta-options>` class, it can subclass it. For example::

    from django.db import models


    class CommonInfo(models.Model):
        # ...
        class Meta:
            abstract = True
            ordering = ["name"]


    class Student(CommonInfo):
        # ...
        class Meta(CommonInfo.Meta):
            db_table = "student_info"

Django does make one adjustment to the :ref:`Meta <meta-options>` class of an
abstract base class: before installing the :ref:`Meta <meta-options>`
attribute, it sets ``abstract=False``. This means that children of abstract
base classes don't automatically become abstract classes themselves. To make
an abstract base class that inherits from another abstract base class, you need
to explicitly set ``abstract=True`` on the child.

Some attributes won't make sense to include in the :ref:`Meta <meta-options>` class of an
abstract base class. For example, including ``db_table`` would mean that all
the child classes (the ones that don't specify their own :ref:`Meta <meta-options>`) would use
the same database table, which is almost certainly not what you want.

Due to the way Python inheritance works, if a child class inherits from
multiple abstract base classes, only the :ref:`Meta <meta-options>` options
from the first listed class will be inherited by default. To inherit :ref:`Meta
<meta-options>` options from multiple abstract base classes, you must
explicitly declare the :ref:`Meta <meta-options>` inheritance. For example::

    from django.db import models


    class CommonInfo(models.Model):
        name = models.CharField(max_length=100)
        age = models.PositiveIntegerField()

        class Meta:
            abstract = True
            ordering = ["name"]


    class Unmanaged(models.Model):
        class Meta:
            abstract = True
            managed = False


    class Student(CommonInfo, Unmanaged):
        home_group = models.CharField(max_length=5)

        class Meta(CommonInfo.Meta, Unmanaged.Meta):
            pass

.. _abstract-related-name:

Be careful with ``related_name`` and ``related_query_name``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are using :attr:`~django.db.models.ForeignKey.related_name` or
:attr:`~django.db.models.ForeignKey.related_query_name` on a ``ForeignKey`` or
``ManyToManyField``, you must always specify a *unique* reverse name and query
name for the field. This would normally cause a problem in abstract base
classes, since the fields on this class are included into each of the child
classes, with exactly the same values for the attributes (including
:attr:`~django.db.models.ForeignKey.related_name` and
:attr:`~django.db.models.ForeignKey.related_query_name`) each time.

To work around this problem, when you are using
:attr:`~django.db.models.ForeignKey.related_name` or
:attr:`~django.db.models.ForeignKey.related_query_name` in an abstract base
class (only), part of the value should contain ``'%(app_label)s'`` and
``'%(class)s'``.

- ``'%(class)s'`` is replaced by the lowercased name of the child class that
  the field is used in.
- ``'%(app_label)s'`` is replaced by the lowercased name of the app the child
  class is contained within. Each installed application name must be unique and
  the model class names within each app must also be unique, therefore the
  resulting name will end up being different.

For example, given an app ``common/models.py``::

    from django.db import models


    class Base(models.Model):
        m2m = models.ManyToManyField(
            OtherModel,
            related_name="%(app_label)s_%(class)s_related",
            related_query_name="%(app_label)s_%(class)ss",
        )

        class Meta:
            abstract = True


    class ChildA(Base):
        pass


    class ChildB(Base):
        pass

Along with another app ``rare/models.py``::

    from common.models import Base


    class ChildB(Base):
        pass

The reverse name of the ``common.ChildA.m2m`` field will be
``common_childa_related`` and the reverse query name will be ``common_childas``.
The reverse name of the ``common.ChildB.m2m`` field will be
``common_childb_related`` and the reverse query name will be
``common_childbs``. Finally, the reverse name of the ``rare.ChildB.m2m`` field
will be ``rare_childb_related`` and the reverse query name will be
``rare_childbs``. It's up to you how you use the ``'%(class)s'`` and
``'%(app_label)s'`` portion to construct your related name or related query name
but if you forget to use it, Django will raise errors when you perform system
checks (or run :djadmin:`migrate`).

If you don't specify a :attr:`~django.db.models.ForeignKey.related_name`
attribute for a field in an abstract base class, the default reverse name will
be the name of the child class followed by ``'_set'``, just as it normally
would be if you'd declared the field directly on the child class. For example,
in the above code, if the :attr:`~django.db.models.ForeignKey.related_name`
attribute was omitted, the reverse name for the ``m2m`` field would be
``childa_set`` in the ``ChildA`` case and ``childb_set`` for the ``ChildB``
field.

.. _multi-table-inheritance:

Multi-table inheritance
-----------------------

The second type of model inheritance supported by Django is when each model in
the hierarchy is a model all by itself. Each model corresponds to its own
database table and can be queried and created individually. The inheritance
relationship introduces links between the child model and each of its parents
(via an automatically-created :class:`~django.db.models.OneToOneField`).
For example::

    from django.db import models


    class Place(models.Model):
        name = models.CharField(max_length=50)
        address = models.CharField(max_length=80)


    class Restaurant(Place):
        serves_hot_dogs = models.BooleanField(default=False)
        serves_pizza = models.BooleanField(default=False)

All of the fields of ``Place`` will also be available in ``Restaurant``,
although the data will reside in a different database table. So these are both
possible:

.. code-block:: pycon

    >>> Place.objects.filter(name="Bob's Cafe")
    >>> Restaurant.objects.filter(name="Bob's Cafe")

If you have a ``Place`` that is also a ``Restaurant``, you can get from the
``Place`` object to the ``Restaurant`` object by using the lowercase version of
the model name:

.. code-block:: pycon

    >>> p = Place.objects.get(id=12)
    # If p is a Restaurant object, this will give the child class:
    >>> p.restaurant
    <Restaurant: ...>

However, if ``p`` in the above example was *not* a ``Restaurant`` (it had been
created directly as a ``Place`` object or was the parent of some other class),
referring to ``p.restaurant`` would raise a ``Restaurant.DoesNotExist``
exception.

The automatically-created :class:`~django.db.models.OneToOneField` on
``Restaurant`` that links it to ``Place`` looks like this::

    place_ptr = models.OneToOneField(
        Place,
        on_delete=models.CASCADE,
        parent_link=True,
        primary_key=True,
    )

You can override that field by declaring your own
:class:`~django.db.models.OneToOneField` with :attr:`parent_link=True
<django.db.models.OneToOneField.parent_link>` on ``Restaurant``.

.. _meta-and-multi-table-inheritance:

``Meta`` and multi-table inheritance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In the multi-table inheritance situation, it doesn't make sense for a child
class to inherit from its parent's :ref:`Meta <meta-options>` class. All the :ref:`Meta <meta-options>` options
have already been applied to the parent class and applying them again would
normally only lead to contradictory behavior (this is in contrast with the
abstract base class case, where the base class doesn't exist in its own
right).

So a child model does not have access to its parent's :ref:`Meta
<meta-options>` class. However, there are a few limited cases where the child
inherits behavior from the parent: if the child does not specify an
:attr:`~django.db.models.Options.ordering` attribute or a
:attr:`~django.db.models.Options.get_latest_by` attribute, it will inherit
these from its parent.

If the parent has an ordering and you don't want the child to have any natural
ordering, you can explicitly disable it::

    class ChildModel(ParentModel):
        # ...
        class Meta:
            # Remove parent's ordering effect
            ordering = []

Inheritance and reverse relations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Because multi-table inheritance uses an implicit
:class:`~django.db.models.OneToOneField` to link the child and
the parent, it's possible to move from the parent down to the child,
as in the above example. However, this uses up the name that is the
default :attr:`~django.db.models.ForeignKey.related_name` value for
:class:`~django.db.models.ForeignKey` and
:class:`~django.db.models.ManyToManyField` relations.  If you
are putting those types of relations on a subclass of the parent model, you
**must** specify the :attr:`~django.db.models.ForeignKey.related_name`
attribute on each such field. If you forget, Django will raise a validation
error.

For example, using the above ``Place`` class again, let's create another
subclass with a :class:`~django.db.models.ManyToManyField`::

    class Supplier(Place):
        customers = models.ManyToManyField(Place)

This results in the error:

.. code-block:: pytb

    Reverse query name for 'Supplier.customers' clashes with reverse query
    name for 'Supplier.place_ptr'.

    HINT: Add or change a related_name argument to the definition for
    'Supplier.customers' or 'Supplier.place_ptr'.

Adding ``related_name`` to the ``customers`` field as follows would resolve the
error: ``models.ManyToManyField(Place, related_name='provider')``.

Specifying the parent link field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As mentioned, Django will automatically create a
:class:`~django.db.models.OneToOneField` linking your child
class back to any non-abstract parent models. If you want to control the
name of the attribute linking back to the parent, you can create your
own :class:`~django.db.models.OneToOneField` and set
:attr:`parent_link=True <django.db.models.OneToOneField.parent_link>`
to indicate that your field is the link back to the parent class.

.. _proxy-models:

Proxy models
------------

When using :ref:`multi-table inheritance <multi-table-inheritance>`, a new
database table is created for each subclass of a model. This is usually the
desired behavior, since the subclass needs a place to store any additional
data fields that are not present on the base class. Sometimes, however, you
only want to change the Python behavior of a model -- perhaps to change the
default manager, or add a new method.

This is what proxy model inheritance is for: creating a *proxy* for the
original model. You can create, delete and update instances of the proxy model
and all the data will be saved as if you were using the original (non-proxied)
model. The difference is that you can change things like the default model
ordering or the default manager in the proxy, without having to alter the
original.

Proxy models are declared like normal models. You tell Django that it's a
proxy model by setting the :attr:`~django.db.models.Options.proxy` attribute of
the ``Meta`` class to ``True``.

For example, suppose you want to add a method to the ``Person`` model. You can do it like this::

    from django.db import models


    class Person(models.Model):
        first_name = models.CharField(max_length=30)
        last_name = models.CharField(max_length=30)


    class MyPerson(Person):
        class Meta:
            proxy = True

        def do_something(self):
            # ...
            pass

The ``MyPerson`` class operates on the same database table as its parent
``Person`` class. In particular, any new instances of ``Person`` will also be
accessible through ``MyPerson``, and vice-versa:

.. code-block:: pycon

    >>> p = Person.objects.create(first_name="foobar")
    >>> MyPerson.objects.get(first_name="foobar")
    <MyPerson: foobar>

You could also use a proxy model to define a different default ordering on
a model. You might not always want to order the ``Person`` model, but regularly
order by the ``last_name`` attribute when you use the proxy::

    class OrderedPerson(Person):
        class Meta:
            ordering = ["last_name"]
            proxy = True

Now normal ``Person`` queries will be unordered
and ``OrderedPerson`` queries will be ordered by ``last_name``.

Proxy models inherit ``Meta`` attributes :ref:`in the same way as regular
models <meta-and-multi-table-inheritance>`.

``QuerySet``\s still return the model that was requested
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There is no way to have Django return, say, a ``MyPerson`` object whenever you
query for ``Person`` objects. A queryset for ``Person`` objects will return
those types of objects. The whole point of proxy objects is that code relying
on the original ``Person`` will use those and your own code can use the
extensions you included (that no other code is relying on anyway). It is not
a way to replace the ``Person`` (or any other) model everywhere with something
of your own creation.

Base class restrictions
~~~~~~~~~~~~~~~~~~~~~~~

A proxy model must inherit from exactly one non-abstract model class. You
can't inherit from multiple non-abstract models as the proxy model doesn't
provide any connection between the rows in the different database tables. A
proxy model can inherit from any number of abstract model classes, providing
they do *not* define any model fields. A proxy model may also inherit from any
number of proxy models that share a common non-abstract parent class.

Proxy model managers
~~~~~~~~~~~~~~~~~~~~

If you don't specify any model managers on a proxy model, it inherits the
managers from its model parents. If you define a manager on the proxy model,
it will become the default, although any managers defined on the parent
classes will still be available.

Continuing our example from above, you could change the default manager used
when you query the ``Person`` model like this::

    from django.db import models


    class NewManager(models.Manager):
        # ...
        pass


    class MyPerson(Person):
        objects = NewManager()

        class Meta:
            proxy = True

If you wanted to add a new manager to the Proxy, without replacing the
existing default, you can use the techniques described in the :ref:`custom
manager <custom-managers-and-inheritance>` documentation: create a base class
containing the new managers and inherit that after the primary base class::

    # Create an abstract class for the new manager.
    class ExtraManagers(models.Model):
        secondary = NewManager()

        class Meta:
            abstract = True


    class MyPerson(Person, ExtraManagers):
        class Meta:
            proxy = True

You probably won't need to do this very often, but, when you do, it's
possible.

.. _proxy-vs-unmanaged-models:

Differences between proxy inheritance and unmanaged models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Proxy model inheritance might look fairly similar to creating an unmanaged
model, using the :attr:`~django.db.models.Options.managed` attribute on a
model's ``Meta`` class.

With careful setting of :attr:`Meta.db_table
<django.db.models.Options.db_table>` you could create an unmanaged model that
shadows an existing model and adds Python methods to it. However, that would be
very repetitive and fragile as you need to keep both copies synchronized if you
make any changes.

On the other hand, proxy models are intended to behave exactly like the model
they are proxying for. They are always in sync with the parent model since they
directly inherit its fields and managers.

The general rules are:

#. If you are mirroring an existing model or database table and don't want
   all the original database table columns, use ``Meta.managed=False``.
   That option is normally useful for modeling database views and tables
   not under the control of Django.
#. If you are wanting to change the Python-only behavior of a model, but
   keep all the same fields as in the original, use ``Meta.proxy=True``.
   This sets things up so that the proxy model is an exact copy of the
   storage structure of the original model when data is saved.

.. _model-multiple-inheritance-topic:

Multiple inheritance
--------------------

Just as with Python's subclassing, it's possible for a Django model to inherit
from multiple parent models. Keep in mind that normal Python name resolution
rules apply. The first base class that a particular name (e.g. :ref:`Meta
<meta-options>`) appears in will be the one that is used; for example, this
means that if multiple parents contain a :ref:`Meta <meta-options>` class,
only the first one is going to be used, and all others will be ignored.

Generally, you won't need to inherit from multiple parents. The main use-case
where this is useful is for "mix-in" classes: adding a particular extra
field or method to every class that inherits the mix-in. Try to keep your
inheritance hierarchies as simple and straightforward as possible so that you
won't have to struggle to work out where a particular piece of information is
coming from.

Note that inheriting from multiple models that have a common ``id`` primary
key field will raise an error. To properly use multiple inheritance, you can
use an explicit :class:`~django.db.models.AutoField` in the base models::

    class Article(models.Model):
        article_id = models.AutoField(primary_key=True)
        ...


    class Book(models.Model):
        book_id = models.AutoField(primary_key=True)
        ...


    class BookReview(Book, Article):
        pass

Or use a common ancestor to hold the :class:`~django.db.models.AutoField`. This
requires using an explicit :class:`~django.db.models.OneToOneField` from each
parent model to the common ancestor to avoid a clash between the fields that
are automatically generated and inherited by the child::

    class Piece(models.Model):
        pass


    class Article(Piece):
        article_piece = models.OneToOneField(
            Piece, on_delete=models.CASCADE, parent_link=True
        )
        ...


    class Book(Piece):
        book_piece = models.OneToOneField(Piece, on_delete=models.CASCADE, parent_link=True)
        ...


    class BookReview(Book, Article):
        pass

Field name "hiding" is not permitted
------------------------------------

In normal Python class inheritance, it is permissible for a child class to
override any attribute from the parent class. In Django, this isn't usually
permitted for model fields. If a non-abstract model base class has a field
called ``author``, you can't create another model field or define
an attribute called ``author`` in any class that inherits from that base class.

This restriction doesn't apply to model fields inherited from an abstract
model. Such fields may be overridden with another field or value, or be removed
by setting ``field_name = None``.

.. warning::

    Model managers are inherited from abstract base classes. Overriding an
    inherited field which is referenced by an inherited
    :class:`~django.db.models.Manager` may cause subtle bugs. See :ref:`custom
    managers and model inheritance <custom-managers-and-inheritance>`.

.. note::

    Some fields define extra attributes on the model, e.g. a
    :class:`~django.db.models.ForeignKey` defines an extra attribute with
    ``_id`` appended to the field name, as well as ``related_name`` and
    ``related_query_name`` on the foreign model.

    These extra attributes cannot be overridden unless the field that defines
    it is changed or removed so that it no longer defines the extra attribute.

Overriding fields in a parent model leads to difficulties in areas such as
initializing new instances (specifying which field is being initialized in
``Model.__init__``) and serialization. These are features which normal Python
class inheritance doesn't have to deal with in quite the same way, so the
difference between Django model inheritance and Python class inheritance isn't
arbitrary.

This restriction only applies to attributes which are
:class:`~django.db.models.Field` instances. Normal Python attributes
can be overridden if you wish. It also only applies to the name of the
attribute as Python sees it: if you are manually specifying the database
column name, you can have the same column name appearing in both a child and
an ancestor model for multi-table inheritance (they are columns in two
different database tables).

Django will raise a :exc:`~django.core.exceptions.FieldError` if you override
any model field in any ancestor model.

Note that because of the way fields are resolved during class definition, model
fields inherited from multiple abstract parent models are resolved in a strict
depth-first order. This contrasts with standard Python MRO, which is resolved
breadth-first in cases of diamond shaped inheritance. This difference only
affects complex model hierarchies, which (as per the advice above) you should
try to avoid.

Organizing models in a package
==============================

The :djadmin:`manage.py startapp <startapp>` command creates an application
structure that includes a ``models.py`` file. If you have many models,
organizing them in separate files may be useful.

To do so, create a ``models`` package. Remove ``models.py`` and create a
``myapp/models/`` directory with an ``__init__.py`` file and the files to
store your models. You must import the models in the ``__init__.py`` file.

For example, if you had ``organic.py`` and ``synthetic.py`` in the ``models``
directory:

.. code-block:: python
    :caption: ``myapp/models/__init__.py``

    from .organic import Person
    from .synthetic import Robot

Explicitly importing each model rather than using ``from .models import *``
has the advantages of not cluttering the namespace, making code more readable,
and keeping code analysis tools useful.

.. seealso::

    :doc:`The Models Reference </ref/models/index>`
        Covers all the model related APIs including model fields, related
        objects, and ``QuerySet``.