File utils.py
has 438 lines of code (exceeds 250 allowed). Consider refactoring. Open
# -*- coding: utf-8 -*-
import re
import json
import time as timenow
import math
Cyclomatic complexity is too high in function create_yaml_header. (19) Open
def create_yaml_header(comment, json_metadata={}, reply_identifier=None):
yaml_prefix = '---\n'
if comment["title"] != "":
yaml_prefix += 'title: "%s"\n' % comment["title"]
if "permlink" in comment:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function derive_permlink
has a Cognitive Complexity of 24 (exceeds 5 allowed). Consider refactoring. Open
def derive_permlink(title, parent_permlink=None, parent_author=None,
max_permlink_length=256, with_suffix=True):
"""Derive a permlink from a comment title (for root level
comments) or the parent permlink and optionally the parent
author (for replies).
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in function import_custom_json. (15) Open
def import_custom_json(jsonid, json_data):
data = {}
if isinstance(json_data, tuple) and len(json_data) > 1:
key = None
for j in json_data:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function import_custom_json
has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring. Open
def import_custom_json(jsonid, json_data):
data = {}
if isinstance(json_data, tuple) and len(json_data) > 1:
key = None
for j in json_data:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function create_yaml_header
has a Cognitive Complexity of 20 (exceeds 5 allowed). Consider refactoring. Open
def create_yaml_header(comment, json_metadata={}, reply_identifier=None):
yaml_prefix = '---\n'
if comment["title"] != "":
yaml_prefix += 'title: "%s"\n' % comment["title"]
if "permlink" in comment:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in function derive_beneficiaries. (11) Open
def derive_beneficiaries(beneficiaries):
beneficiaries_list = []
beneficiaries_accounts = []
beneficiaries_sum = 0
if not isinstance(beneficiaries, list):
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function derive_permlink. (11) Open
def derive_permlink(title, parent_permlink=None, parent_author=None,
max_permlink_length=256, with_suffix=True):
"""Derive a permlink from a comment title (for root level
comments) or the parent permlink and optionally the parent
author (for replies).
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function derive_beneficiaries
has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring. Open
def derive_beneficiaries(beneficiaries):
beneficiaries_list = []
beneficiaries_accounts = []
beneficiaries_sum = 0
if not isinstance(beneficiaries, list):
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in function create_new_password. (9) Open
def create_new_password(length=32):
"""Creates a random password containing alphanumeric chars with at least 1 number and 1 upper and lower char"""
alphabet = string.ascii_letters + string.digits
while True:
import_password = ''.join(secrets.choice(alphabet) for i in range(length))
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function remove_from_dict. (8) Open
def remove_from_dict(obj, keys=list(), keep_keys=True):
""" Prune a class or dictionary of all but keys (keep_keys=True).
Prune a class or dictionary of specified keys.(keep_keys=False).
"""
if type(obj) == dict:
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function import_coldcard_wif. (8) Open
def import_coldcard_wif(filename):
"""Reads a exported coldcard Wif text file and returns the WIF and used path"""
next_var = ""
import_password = ""
path = ""
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function derive_tags. (6) Open
def derive_tags(tags):
tags_list = []
if len(tags.split(",")) > 1:
for tag in tags.split(","):
tags_list.append(tag.strip())
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function import_coldcard_wif
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def import_coldcard_wif(filename):
"""Reads a exported coldcard Wif text file and returns the WIF and used path"""
next_var = ""
import_password = ""
path = ""
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function derive_permlink
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def derive_permlink(title, parent_permlink=None, parent_author=None,
Function derive_tags
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def derive_tags(tags):
tags_list = []
if len(tags.split(",")) > 1:
for tag in tags.split(","):
tags_list.append(tag.strip())
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function construct_authorpermvoter
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def construct_authorpermvoter(*args):
""" Create a vote identifier from vote object or arguments.
Examples:
.. code-block:: python
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this function. Open
return suffix[1:] # use timestamp only, strip leading "-"
Avoid too many return
statements within this function. Open
return body + suffix
Avoid too many return
statements within this function. Open
return body
Refactor this function to reduce its Cognitive Complexity from 18 to the 15 allowed. Open
def derive_beneficiaries(beneficiaries):
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Refactor this function to reduce its Cognitive Complexity from 20 to the 15 allowed. Open
def create_yaml_header(comment, json_metadata={}, reply_identifier=None):
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Refactor this function to reduce its Cognitive Complexity from 25 to the 15 allowed. Open
def import_custom_json(jsonid, json_data):
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Refactor this function to reduce its Cognitive Complexity from 24 to the 15 allowed. Open
def derive_permlink(title, parent_permlink=None, parent_author=None,
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Either merge this branch with the identical one on line "291" or change one of the implementations. Open
items = list(obj.items())
- Read upRead up
- Exclude checks
Having two branches in the same if
structure with the same implementation is at best duplicate code, and at worst a coding error. If
the same logic is truly needed for both instances, then they should be combined.
Noncompliant Code Example
if 0 <= a < 10: do_the_thing() elif 10 <= a < 20: do_the_other_thing() elif 20 <= a < 50: do_the_thing() # Noncompliant; duplicates first condition else: do_the_rest() b = 4 if a > 12 else 4
Compliant Solution
if (0 <= a < 10) or (20 <= a < 50): do_the_thing() elif 10 <= a < 20: do_the_other_thing() else: do_the_rest() b = 4
or
if 0 <= a < 10: do_the_thing() elif 10 <= a < 20: do_the_other_thing() elif 20 <= a < 50: do_the_third_thing() else: do_the_rest() b = 8 if a > 12 else 4
Identical blocks of code found in 2 locations. Consider refactoring. Open
if "beneficiaries" in comment:
beneficiaries = []
for b in comment["beneficiaries"]:
beneficiaries.append("%s:%.2f%%" % (b["account"], b["weight"] / 10000 * 100))
if len(beneficiaries) > 0:
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 102.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if "percent_steem_dollars" in comment:
yaml_prefix += 'percent_steem_dollars: %s\n' % str(comment["percent_steem_dollars"])
elif "percent_hbd" in comment:
yaml_prefix += 'percent_hbd: %s\n' % str(comment["percent_hbd"])
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 67.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if with_suffix:
rem_chars = max_permlink_length - len(suffix) - len(prefix)
else:
rem_chars = max_permlink_length - len(prefix)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if with_suffix:
rem_chars = max_permlink_length - len(suffix) - len(prefix)
else:
rem_chars = max_permlink_length - len(prefix)
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 45.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
if comment["title"] != "":
yaml_prefix += 'title: "%s"\n' % comment["title"]
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 35.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Rename function "addTzInfo" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def addTzInfo(t, timezone="UTC"):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...
Rename function "formatToTimeStamp" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def formatToTimeStamp(t):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...
Rename function "formatTimeFromNow" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def formatTimeFromNow(secs=0):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...
Rename function "formatTime" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def formatTime(t):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...
Rename function "formatTimeString" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def formatTimeString(t):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...
Rename function "formatTimedelta" to match the regular expression ^[a-z_][a-z0-9_]{2,}$. Open
def formatTimedelta(td):
- Read upRead up
- Exclude checks
Shared coding conventions allow teams to collaborate efficiently. This rule checks that all function names match a provided regular expression.
Noncompliant Code Example
With the default provided regular expression: ^[a-z_][a-z0-9_]{2,30}$
def MyFunction(a,b): ...
Compliant Solution
def my_function(a,b): ...