src/math/vector.js
/**
* Immutable 3D vector.
*/
export class Vector3D {
/**
* X coordinate.
*
* @type {number}
*/
#x;
/**
* Y coordinate.
*
* @type {number}
*/
#y;
/**
* Z coordinate.
*
* @type {number}
*/
#z;
/**
* @param {number} x The X component of the vector.
* @param {number} y The Y component of the vector.
* @param {number} z The Z component of the vector.
*/
constructor(x, y, z) {
this.#x = x;
this.#y = y;
this.#z = z;
}
/**
* Get the X component of the vector.
*
* @returns {number} The X component of the vector.
*/
getX() {
return this.#x;
}
/**
* Get the Y component of the vector.
*
* @returns {number} The Y component of the vector.
*/
getY() {
return this.#y;
}
/**
* Get the Z component of the vector.
*
* @returns {number} The Z component of the vector.
*/
getZ() {
return this.#z;
}
/**
* Check for Vector3D equality.
*
* @param {Vector3D} rhs The other vector to compare to.
* @returns {boolean} True if both vectors are equal.
*/
equals(rhs) {
return rhs !== null &&
this.#x === rhs.getX() &&
this.#y === rhs.getY() &&
this.#z === rhs.getZ();
}
/**
* Get a string representation of the Vector3D.
*
* @returns {string} The vector as a string.
*/
toString() {
return '(' + this.#x +
', ' + this.#y +
', ' + this.#z + ')';
}
/**
* Get the norm of the vector.
*
* @returns {number} The norm.
*/
norm() {
return Math.sqrt(
(this.#x * this.#x) +
(this.#y * this.#y) +
(this.#z * this.#z)
);
}
/**
* Get the cross product with another Vector3D, ie the
* vector that is perpendicular to both a and b.
* If both vectors are parallel, the cross product is a zero vector.
*
* Ref: {@link https://en.wikipedia.org/wiki/Cross_product}.
*
* @param {Vector3D} vector3D The input vector.
* @returns {Vector3D} The result vector.
*/
crossProduct(vector3D) {
return new Vector3D(
(this.#y * vector3D.getZ()) - (vector3D.getY() * this.#z),
(this.#z * vector3D.getX()) - (vector3D.getZ() * this.#x),
(this.#x * vector3D.getY()) - (vector3D.getX() * this.#y));
}
/**
* Get the dot product with another Vector3D.
*
* Ref: {@link https://en.wikipedia.org/wiki/Dot_product}.
*
* @param {Vector3D} vector3D The input vector.
* @returns {number} The dot product.
*/
dotProduct(vector3D) {
return (this.#x * vector3D.getX()) +
(this.#y * vector3D.getY()) +
(this.#z * vector3D.getZ());
}
/**
* Is this vector codirectional to an input one.
*
* @param {Vector3D} vector3D The vector to test.
* @returns {boolean} True if codirectional, false is opposite.
*/
isCodirectional(vector3D) {
// a.dot(b) = ||a|| * ||b|| * cos(theta)
// (https://en.wikipedia.org/wiki/Dot_product#Geometric_definition)
// -> the sign of the dot product depends on the cosinus of
// the angle between the vectors
// -> >0 => vectors are codirectional
// -> <0 => vectors are opposite
return this.dotProduct(vector3D) > 0;
}
} // Vector3D class