kengz/SLM-Lab

View on GitHub
slm_lab/agent/net/net_util.py

Summary

Maintainability
C
1 day
Test Coverage
D
69%

Function dev_check_train_step has a Cognitive Complexity of 22 (exceeds 10 allowed). Consider refactoring.
Open

def dev_check_train_step(fn):
    '''
    Decorator to check if net.train_step actually updates the network weights properly
    Triggers only if to_check_train_step is True (dev/test mode)
    @example
Severity: Minor
Found in slm_lab/agent/net/net_util.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function init_global_nets has a Cognitive Complexity of 11 (exceeds 10 allowed). Consider refactoring.
Open

def init_global_nets(algorithm):
    '''
    Initialize global_nets for Hogwild using an identical instance of an algorithm from an isolated Session
    in spec.meta.distributed, specify either:
    - 'shared': global network parameter is shared all the time. In this mode, algorithm local network will be replaced directly by global_net via overriding by identify attribute name
Severity: Minor
Found in slm_lab/agent/net/net_util.py - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function init_params has a Cognitive Complexity of 11 (exceeds 10 allowed). Consider refactoring.
Open

def init_params(module, init_fn):
    '''Initialize module's weights using init_fn, and biases to 0.0'''
    bias_init = 0.0
    classname = util.get_class_name(module)
    if 'Net' in classname:  # skip if it's a net, not pytorch layer
Severity: Minor
Found in slm_lab/agent/net/net_util.py - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

TODO found
Open

        else:  # TODO retrieve lr more generally
Severity: Minor
Found in slm_lab/agent/net/net_util.py by fixme

TODO found
Open

            # TODO if without momentum, parameters should not change too
Severity: Minor
Found in slm_lab/agent/net/net_util.py by fixme

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    for net_name in net_names:
        net = getattr(algorithm, net_name)
        model_path = f'{model_prepath}_{net_name}_model.pt'
        load(net, model_path)
        optim_name = net_name.replace('net', 'optim')
Severity: Major
Found in slm_lab/agent/net/net_util.py and 1 other location - About 4 hrs to fix
slm_lab/agent/net/net_util.py on lines 188..196

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 93.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    for net_name in net_names:
        net = getattr(algorithm, net_name)
        model_path = f'{model_prepath}_{net_name}_model.pt'
        save(net, model_path)
        optim_name = net_name.replace('net', 'optim')
Severity: Major
Found in slm_lab/agent/net/net_util.py and 1 other location - About 4 hrs to fix
slm_lab/agent/net/net_util.py on lines 216..224

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 93.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

There are no issues that match your filters.

Category
Status