# poliastro/poliastro

src/poliastro/czml/extract_czml.py

### Summary

C
1 day

#### File `extract_czml.py` has 522 lines of code (exceeds 350 allowed). Consider refactoring. Open

``````from datetime import timezone
from typing import Any, List

import numpy as np
from astropy import units as u``````
Found in src/poliastro/czml/extract_czml.py - About 6 hrs to fix

#### Cyclomatic complexity is too high in method add_orbit. (14) Open

``````    def add_orbit(
self,
orbit,
rtol=1e-10,
N=None,``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Cyclomatic complexity is too high in method add_ground_station. (8) Open

``````    def add_ground_station(
self,
pos,
id_description=None,
label_fill_color=None,``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Cyclomatic complexity is too high in method add_trajectory. (8) Open

``````    def add_trajectory(
self,
positions,
epochs,
groundtrack_show=False,``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Function `add_orbit` has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open

``````    def add_orbit(
self,
orbit,
rtol=1e-10,
N=None,``````
Found in src/poliastro/czml/extract_czml.py - About 2 hrs to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"

#### Function `add_orbit` has 18 arguments (exceeds 9 allowed). Consider refactoring. Open

``    def add_orbit(``
Found in src/poliastro/czml/extract_czml.py - About 1 hr to fix

#### Function `add_trajectory` has 17 arguments (exceeds 9 allowed). Consider refactoring. Open

``    def add_trajectory(``
Found in src/poliastro/czml/extract_czml.py - About 1 hr to fix

#### Function `add_ground_station` has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open

``````    def add_ground_station(
self,
pos,
id_description=None,
label_fill_color=None,``````
Found in src/poliastro/czml/extract_czml.py - About 55 mins to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"

#### Function `add_trajectory` has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open

``````    def add_trajectory(
self,
positions,
epochs,
groundtrack_show=False,``````
Found in src/poliastro/czml/extract_czml.py - About 35 mins to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"