# python-security/pyt

pyt/helper_visitors/vars_visitor.py

### Summary

D
2 days

#### `VarsVisitor` has 25 functions (exceeds 20 allowed). Consider refactoring. Open

``````class VarsVisitor(ast.NodeVisitor):
def __init__(self):
self.result = list()

def visit_Name(self, node):``````
Found in pyt/helper_visitors/vars_visitor.py - About 2 hrs to fix

#### Cyclomatic complexity is too high in method slicev. (8) Open

``````    def slicev(self, node):
if isinstance(node, ast.Slice):
if node.lower:
self.visit(node.lower)
if node.upper:``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Cyclomatic complexity is too high in method visit_Call. (8) Open

``````    def visit_Call(self, node):
# This will not visit Flask in Flask(__name__) but it will visit request in `request.args.get()
if not isinstance(node.func, ast.Name):
self.visit(node.func)
for arg_node in itertools.chain(node.args, node.keywords):``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Cyclomatic complexity is too high in method visit_curried_call_inside_call_args. (7) Open

``````    def visit_curried_call_inside_call_args(self, inner_call):
# Curried functions aren't supported really, but we now at least have a defined behaviour.
# In f(g(a)(b)(c)), inner_call is the Call node with argument c
# Try to get the name of curried function g
curried_func = inner_call.func.func``````

## Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

#### Function `slicev` has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open

``````    def slicev(self, node):
if isinstance(node, ast.Slice):
if node.lower:
self.visit(node.lower)
if node.upper:``````
Found in pyt/helper_visitors/vars_visitor.py - About 1 hr to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"

#### Function `visit_Call` has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open

``````    def visit_Call(self, node):
# This will not visit Flask in Flask(__name__) but it will visit request in `request.args.get()
if not isinstance(node.func, ast.Name):
self.visit(node.func)
for arg_node in itertools.chain(node.args, node.keywords):``````
Found in pyt/helper_visitors/vars_visitor.py - About 1 hr to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"

#### Function `visit_curried_call_inside_call_args` has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open

``````    def visit_curried_call_inside_call_args(self, inner_call):
# Curried functions aren't supported really, but we now at least have a defined behaviour.
# In f(g(a)(b)(c)), inner_call is the Call node with argument c
# Try to get the name of curried function g
curried_func = inner_call.func.func``````
Found in pyt/helper_visitors/vars_visitor.py - About 55 mins to fix

# Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

### A method's cognitive complexity is based on a few simple rules:

• Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
• Code is considered more complex for each "break in the linear flow of the code"
• Code is considered more complex when "flow breaking structures are nested"

#### Identical blocks of code found in 2 locations. Consider refactoring. Open

``````    def slicev(self, node):
if isinstance(node, ast.Slice):
if node.lower:
self.visit(node.lower)
if node.upper:``````
Found in pyt/helper_visitors/vars_visitor.py and 1 other location - About 7 hrs to fix
pyt/helper_visitors/label_visitor.py on lines 177..190

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 116.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 2 locations. Consider refactoring. Open

``````    def comprehension(self, node):
self.visit(node.target)
self.visit(node.iter)
for c in node.ifs:
self.visit(c)``````
Found in pyt/helper_visitors/vars_visitor.py and 1 other location - About 1 hr to fix
pyt/helper_visitors/vars_visitor.py on lines 60..64

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 46.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 2 locations. Consider refactoring. Open

``````    def visit_DictComp(self, node):
self.visit(node.key)
self.visit(node.value)
for gen in node.generators:
self.comprehension(gen)``````
Found in pyt/helper_visitors/vars_visitor.py and 1 other location - About 1 hr to fix
pyt/helper_visitors/vars_visitor.py on lines 44..48

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 46.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 4 locations. Consider refactoring. Open

``````    def visit_ListComp(self, node):
self.visit(node.elt)
for gen in node.generators:
self.comprehension(gen)``````
Found in pyt/helper_visitors/vars_visitor.py and 3 other locations - About 45 mins to fix
pyt/helper_visitors/vars_visitor.py on lines 55..58
pyt/helper_visitors/vars_visitor.py on lines 66..69
pyt/helper_visitors/vars_visitor.py on lines 78..81

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 35.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 4 locations. Consider refactoring. Open

``````    def visit_GeneratorComp(self, node):
self.visit(node.elt)
for gen in node.generators:
self.comprehension(gen)``````
Found in pyt/helper_visitors/vars_visitor.py and 3 other locations - About 45 mins to fix
pyt/helper_visitors/vars_visitor.py on lines 50..53
pyt/helper_visitors/vars_visitor.py on lines 55..58
pyt/helper_visitors/vars_visitor.py on lines 78..81

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 35.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 4 locations. Consider refactoring. Open

``````    def visit_SetComp(self, node):
self.visit(node.elt)
for gen in node.generators:
self.comprehension(gen)``````
Found in pyt/helper_visitors/vars_visitor.py and 3 other locations - About 45 mins to fix
pyt/helper_visitors/vars_visitor.py on lines 50..53
pyt/helper_visitors/vars_visitor.py on lines 66..69
pyt/helper_visitors/vars_visitor.py on lines 78..81

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 35.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.

## Refactorings

#### Similar blocks of code found in 4 locations. Consider refactoring. Open

``````    def visit_Compare(self, node):
self.visit(node.left)
for c in node.comparators:
self.visit(c)``````
Found in pyt/helper_visitors/vars_visitor.py and 3 other locations - About 45 mins to fix
pyt/helper_visitors/vars_visitor.py on lines 50..53
pyt/helper_visitors/vars_visitor.py on lines 55..58
pyt/helper_visitors/vars_visitor.py on lines 66..69

## Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

## Tuning

This issue has a mass of 35.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See `codeclimate-duplication`'s documentation for more information about tuning the mass threshold in your `.codeclimate.yml`.