File vulnerabilities.py
has 458 lines of code (exceeds 250 allowed). Consider refactoring. Open
"""Module for finding vulnerabilities based on a definitions file."""
import ast
import json
from collections import defaultdict
Function get_vulnerability
has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring. Open
def get_vulnerability(
source,
sink,
triggers,
lattice,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in function get_vulnerability. (12) Open
def get_vulnerability(
source,
sink,
triggers,
lattice,
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function how_vulnerable
has a Cognitive Complexity of 20 (exceeds 5 allowed). Consider refactoring. Open
def how_vulnerable(
chain,
blackbox_mapping,
sanitiser_nodes,
potential_sanitiser,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Cyclomatic complexity is too high in function how_vulnerable. (10) Open
def how_vulnerable(
chain,
blackbox_mapping,
sanitiser_nodes,
potential_sanitiser,
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function get_sink_args_which_propagate. (8) Open
def get_sink_args_which_propagate(sink, ast_node):
sink_args_with_positions = CallVisitor.get_call_visit_results(sink.trigger.call, ast_node)
sink_args = []
kwargs_present = set()
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Cyclomatic complexity is too high in function build_sanitiser_node_dict. (6) Open
def build_sanitiser_node_dict(
cfg,
sinks_in_file
):
"""Build a dict of string -> TriggerNode pairs, where the string
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Function get_sink_args_which_propagate
has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring. Open
def get_sink_args_which_propagate(sink, ast_node):
sink_args_with_positions = CallVisitor.get_call_visit_results(sink.trigger.call, ast_node)
sink_args = []
kwargs_present = set()
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function get_vulnerability
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def get_vulnerability(
Function how_vulnerable
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def how_vulnerable(
Function find_vulnerabilities_in_cfg
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def find_vulnerabilities_in_cfg(
Avoid deeply nested control flow statements. Open
if isinstance(cfg_node, AssignmentNode):
sanitiser_nodes.add(cfg_node)
elif isinstance(cfg_node, IfNode):
potential_sanitiser = cfg_node
Function build_sanitiser_node_dict
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def build_sanitiser_node_dict(
cfg,
sinks_in_file
):
"""Build a dict of string -> TriggerNode pairs, where the string
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function identify_triggers
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def identify_triggers(
Function find_vulnerabilities
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def find_vulnerabilities(
Function update_assignments
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def update_assignments(
assignment_list,
assignment_nodes,
source,
lattice
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this function. Open
return VulnerabilityType.UNKNOWN, interactive
Avoid too many return
statements within this function. Open
return VulnerabilityType.TRUE, interactive
Avoid too many return
statements within this function. Open
return VulnerabilityType.SANITISED, interactive
Function find_vulnerabilities_in_cfg
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def find_vulnerabilities_in_cfg(
cfg,
definitions,
lattice,
blackbox_mapping,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"