Showing 2,691 of 2,691 total issues
'x' is already defined. Open
var x = new XMLHttpRequest({mozSystem: true});
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
cb(JSON.parse(ret));
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (x[i].name == reloc) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (r2ui.history_idx == r2ui.history.length) r2ui.history_idx--;
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Empty block statement. Open
} else {
- Read upRead up
- Exclude checks
disallow empty block statements (no-empty)
Empty block statements, while not technically errors, usually occur due to refactoring that wasn't completed. They can cause confusion when reading code.
Rule Details
This rule disallows empty block statements. This rule ignores block statements which contain a comment (for example, in an empty catch
or finally
block of a try
statement to indicate that execution should continue regardless of errors).
Examples of incorrect code for this rule:
/*eslint no-empty: "error"*/
if (foo) {
}
while (foo) {
}
switch(foo) {
}
try {
doSomething();
} catch(ex) {
} finally {
}
Examples of correct code for this rule:
/*eslint no-empty: "error"*/
if (foo) {
// empty
}
while (foo) {
/* empty */
}
try {
doSomething();
} catch (ex) {
// continue regardless of error
}
try {
doSomething();
} finally {
/* continue regardless of error */
}
Options
This rule has an object option for exceptions:
-
"allowEmptyCatch": true
allows emptycatch
clauses (that is, which do not contain a comment)
allowEmptyCatch
Examples of additional correct code for this rule with the { "allowEmptyCatch": true }
option:
/* eslint no-empty: ["error", { "allowEmptyCatch": true }] */
try {
doSomething();
} catch (ex) {}
try {
doSomething();
}
catch (ex) {}
finally {
/* continue regardless of error */
}
When Not To Use It
If you intentionally use empty block statements then you can disable this rule.
Related Rules
- [no-empty-function](./no-empty-function.md) Source: http://eslint.org/docs/rules/
The body of a for-in should be wrapped in an if statement to filter unwanted properties from the prototype. Open
for (var row in this.frames[col]) {
- Read upRead up
- Exclude checks
Require Guarding for-in (guard-for-in)
Looping over objects with a for in
loop will include properties that are inherited through the prototype chain. This behavior can lead to unexpected items in your for loop.
for (key in foo) {
doSomething(key);
}
Note that simply checking foo.hasOwnProperty(key)
is likely to cause an error in some cases; see [no-prototype-builtins](no-prototype-builtins.md).
Rule Details
This rule is aimed at preventing unexpected behavior that could arise from using a for in
loop without filtering the results in the loop. As such, it will warn when for in
loops do not filter their results with an if
statement.
Examples of incorrect code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
doSomething(key);
}
Examples of correct code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
if (Object.prototype.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
if ({}.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
}
Related Rules
- [no-prototype-builtins](no-prototype-builtins.md)
Further Reading
Missing radix parameter. Open
offset += parseInt(x.trim());
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
The body of a for-in should be wrapped in an if statement to filter unwanted properties from the prototype. Open
for (var row in this.frames[col]) {
- Read upRead up
- Exclude checks
Require Guarding for-in (guard-for-in)
Looping over objects with a for in
loop will include properties that are inherited through the prototype chain. This behavior can lead to unexpected items in your for loop.
for (key in foo) {
doSomething(key);
}
Note that simply checking foo.hasOwnProperty(key)
is likely to cause an error in some cases; see [no-prototype-builtins](no-prototype-builtins.md).
Rule Details
This rule is aimed at preventing unexpected behavior that could arise from using a for in
loop without filtering the results in the loop. As such, it will warn when for in
loops do not filter their results with an if
statement.
Examples of incorrect code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
doSomething(key);
}
Examples of correct code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
if (Object.prototype.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
if ({}.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
}
Related Rules
- [no-prototype-builtins](no-prototype-builtins.md)
Further Reading
'line' is already defined. Open
var line = lines[l];
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (ins.type == 'null') ins.type = 'invalid';
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (ins.type == 'upop') ins.type = 'pop';
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
The body of a for-in should be wrapped in an if statement to filter unwanted properties from the prototype. Open
for (var i in regs) {
- Read upRead up
- Exclude checks
Require Guarding for-in (guard-for-in)
Looping over objects with a for in
loop will include properties that are inherited through the prototype chain. This behavior can lead to unexpected items in your for loop.
for (key in foo) {
doSomething(key);
}
Note that simply checking foo.hasOwnProperty(key)
is likely to cause an error in some cases; see [no-prototype-builtins](no-prototype-builtins.md).
Rule Details
This rule is aimed at preventing unexpected behavior that could arise from using a for in
loop without filtering the results in the loop. As such, it will warn when for in
loops do not filter their results with an if
statement.
Examples of incorrect code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
doSomething(key);
}
Examples of correct code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
if (Object.prototype.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
if ({}.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
}
Related Rules
- [no-prototype-builtins](no-prototype-builtins.md)
Further Reading
Expected return with your callback function. Open
callback();
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
cb(JSON.parse(txt)[0]);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (cmd == undefined || cmds.length == 0) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (display[1] == 's') {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
The body of a for-in should be wrapped in an if statement to filter unwanted properties from the prototype. Open
for (var i in x) {
- Read upRead up
- Exclude checks
Require Guarding for-in (guard-for-in)
Looping over objects with a for in
loop will include properties that are inherited through the prototype chain. This behavior can lead to unexpected items in your for loop.
for (key in foo) {
doSomething(key);
}
Note that simply checking foo.hasOwnProperty(key)
is likely to cause an error in some cases; see [no-prototype-builtins](no-prototype-builtins.md).
Rule Details
This rule is aimed at preventing unexpected behavior that could arise from using a for in
loop without filtering the results in the loop. As such, it will warn when for in
loops do not filter their results with an if
statement.
Examples of incorrect code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
doSomething(key);
}
Examples of correct code for this rule:
/*eslint guard-for-in: "error"*/
for (key in foo) {
if (Object.prototype.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
if ({}.hasOwnProperty.call(foo, key)) {
doSomething(key);
}
}
Related Rules
- [no-prototype-builtins](no-prototype-builtins.md)
Further Reading
Expected '===' and instead saw '=='. Open
if (sel == '.ec_gui_background' || sel == '.ec_gui_alt_background') {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
It's not necessary to initialize 'bb' to undefined. Open
var bb = undefined;
- Read upRead up
- Exclude checks
Disallow Initializing to undefined (no-undef-init)
In JavaScript, a variable that is declared and not initialized to any value automatically gets the value of undefined
. For example:
var foo;
console.log(foo === undefined); // true
It's therefore unnecessary to initialize a variable to undefined
, such as:
var foo = undefined;
It's considered a best practice to avoid initializing variables to undefined
.
Rule Details
This rule aims to eliminate variable declarations that initialize to undefined
.
Examples of incorrect code for this rule:
/*eslint no-undef-init: "error"*/
/*eslint-env es6*/
var foo = undefined;
let bar = undefined;
Examples of correct code for this rule:
/*eslint no-undef-init: "error"*/
/*eslint-env es6*/
var foo;
let bar;
const baz = undefined;
When Not To Use It
There is one situation where initializing to undefined
behaves differently than omitting the initialization, and that's when a var
declaration occurs inside of a loop. For example:
Example of incorrect code for this rule:
for (i = 0; i < 10; i++) {
var x = undefined;
console.log(x);
x = i;
}
In this case, the var x
is hoisted out of the loop, effectively creating:
var x;
for (i = 0; i < 10; i++) {
x = undefined;
console.log(x);
x = i;
}
If you were to remove the initialization, then the behavior of the loop changes:
for (i = 0; i < 10; i++) {
var x;
console.log(x);
x = i;
}
This code is equivalent to:
var x;
for (i = 0; i < 10; i++) {
console.log(x);
x = i;
}
This produces a different outcome than defining var x = undefined
in the loop, as x
is no longer reset to undefined
each time through the loop.
If you're using such an initialization inside of a loop, then you should disable this rule.
Example of correct code for this rule, because it is disabled on a specific line:
/*eslint no-undef-init: "error"*/
for (i = 0; i < 10; i++) {
var x = undefined; // eslint-disable-line no-undef-init
console.log(x);
x = i;
}
Related Rules
- [no-undefined](no-undefined.md)
- [no-void](no-void.md) Source: http://eslint.org/docs/rules/
'col' is already defined. Open
var col = +this.curframe[1];
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/