socializer/socializer

View on GitHub

Showing 146 of 146 total issues

Socializer::NotesController#create has approx 8 statements
Open

    def create

A method with Too Many Statements is any method that has a large number of lines.

Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.

So the following method would score +6 in Reek's statement-counting algorithm:

def parse(arg, argv, &error)
  if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
    return nil, block, nil                                         # +1
  end
  opt = (val = parse_arg(val, &error))[1]                          # +2
  val = conv_arg(*val)                                             # +3
  if opt and !arg
    argv.shift                                                     # +4
  else
    val[0] = nil                                                   # +5
  end
  val                                                              # +6
end

(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)

Socializer::PersonDecorator#toolbar_link_url refers to 'item' more than self (maybe move it to another class?)
Open

      url_prefix = item.class.name.demodulize.downcase
      helpers.public_send("#{url_prefix}_activities_path", item.id)

Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.

Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.

Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.

Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.

Example

Running Reek on:

class Warehouse
  def sale_price(item)
    (item.price - item.rebate) * @vat
  end
end

would report:

Warehouse#total_price refers to item more than self (FeatureEnvy)

since this:

(item.price - item.rebate)

belongs to the Item class, not the Warehouse.

Socializer::ActivityAudienceList#call has approx 6 statements
Open

    def call

A method with Too Many Statements is any method that has a large number of lines.

Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.

So the following method would score +6 in Reek's statement-counting algorithm:

def parse(arg, argv, &error)
  if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
    return nil, block, nil                                         # +1
  end
  opt = (val = parse_arg(val, &error))[1]                          # +2
  val = conv_arg(*val)                                             # +3
  if opt and !arg
    argv.shift                                                     # +4
  else
    val[0] = nil                                                   # +5
  end
  val                                                              # +6
end

(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)

Socializer::PersonDecorator has at least 30 methods
Open

  class PersonDecorator < ApplicationDecorator

Too Many Methods is a special case of LargeClass.

Example

Given this configuration

TooManyMethods:
  max_methods: 3

and this code:

class TooManyMethods
  def one; end
  def two; end
  def three; end
  def four; end
end

Reek would emit the following warning:

test.rb -- 1 warning:
  [1]:TooManyMethods has at least 4 methods (TooManyMethods)

Socializer::ActivityAudienceList#audience_list refers to 'audience' more than self (maybe move it to another class?)
Open

      return circles_audience_list if audience.circles?

      activitable = audience.activity_object.activitable

      limited_audience_list(activitable: activitable) if audience.limited?

Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.

Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.

Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.

Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.

Example

Running Reek on:

class Warehouse
  def sale_price(item)
    (item.price - item.rebate) * @vat
  end
end

would report:

Warehouse#total_price refers to item more than self (FeatureEnvy)

since this:

(item.price - item.rebate)

belongs to the Item class, not the Warehouse.

Socializer::PersonDecorator#relationship refers to 'relationship' more than self (maybe move it to another class?)
Open

      return "Seeing anyone?" if relationship.unknown?

      relationship.titleize

Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.

Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.

Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.

Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.

Example

Running Reek on:

class Warehouse
  def sale_price(item)
    (item.price - item.rebate) * @vat
  end
end

would report:

Warehouse#total_price refers to item more than self (FeatureEnvy)

since this:

(item.price - item.rebate)

belongs to the Item class, not the Warehouse.

Socializer::Person#self.create_with_omniauth has approx 8 statements
Open

    def self.create_with_omniauth(auth)
Severity: Minor
Found in app/models/socializer/person.rb by reek

A method with Too Many Statements is any method that has a large number of lines.

Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.

So the following method would score +6 in Reek's statement-counting algorithm:

def parse(arg, argv, &error)
  if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
    return nil, block, nil                                         # +1
  end
  opt = (val = parse_arg(val, &error))[1]                          # +2
  val = conv_arg(*val)                                             # +3
  if opt and !arg
    argv.shift                                                     # +4
  else
    val[0] = nil                                                   # +5
  end
  val                                                              # +6
end

(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)

Socializer::AudienceList#audience_list has approx 6 statements
Open

    def audience_list(type:)

A method with Too Many Statements is any method that has a large number of lines.

Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.

So the following method would score +6 in Reek's statement-counting algorithm:

def parse(arg, argv, &error)
  if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
    return nil, block, nil                                         # +1
  end
  opt = (val = parse_arg(val, &error))[1]                          # +2
  val = conv_arg(*val)                                             # +3
  if opt and !arg
    argv.shift                                                     # +4
  else
    val[0] = nil                                                   # +5
  end
  val                                                              # +6
end

(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)

Socializer::AudienceList#audience_list manually dispatches method call
Open

      return Person.none unless @person.respond_to?(tableized_type)

Reek reports a Manual Dispatch smell if it finds source code that manually checks whether an object responds to a method before that method is called. Manual dispatch is a type of Simulated Polymorphism which leads to code that is harder to reason about, debug, and refactor.

Example

class MyManualDispatcher
  attr_reader :foo

  def initialize(foo)
    @foo = foo
  end

  def call
    foo.bar if foo.respond_to?(:bar)
  end
end

Reek would emit the following warning:

test.rb -- 1 warning:
  [9]: MyManualDispatcher manually dispatches method call (ManualDispatch)

Socializer::PersonDecorator#toolbar_dropdown calls 'helpers.tag' 2 times
Open

      helpers.tag.li(class: "dropdown") do
        dropdown_link +
          helpers.tag.ul(class: "dropdown-menu") do

Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.

Reek implements a check for Duplicate Method Call.

Example

Here's a very much simplified and contrived example. The following method will report a warning:

def double_thing()
  @other.thing + @other.thing
end

One quick approach to silence Reek would be to refactor the code thus:

def double_thing()
  thing = @other.thing
  thing + thing
end

A slightly different approach would be to replace all calls of double_thing by calls to @other.double_thing:

class Other
  def double_thing()
    thing + thing
  end
end

The approach you take will depend on balancing other factors in your code.

Unescaped model attribute
Open

<h1><%= t(".header", count: @contact_of.count) %></h1>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Unescaped parameter value
Open

<h1><%= title %></h1>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Render path contains parameter value
Open

  <%= render activities %>

When a call to render uses a dynamically generated path, template name, file name, or action, there is the possibility that a user can access templates that should be restricted. The issue may be worse if those templates execute code or modify the database.

This warning is shown whenever the path to be rendered is not a static string or symbol.

These warnings are often false positives, however, because it can be difficult to manipulate Rails' assumptions about paths to perform malicious behavior. Reports of dynamic render paths should be checked carefully to see if they can actually be manipulated maliciously by the user.

Render path contains parameter value
Open

  <%= render activities %>

When a call to render uses a dynamically generated path, template name, file name, or action, there is the possibility that a user can access templates that should be restricted. The issue may be worse if those templates execute code or modify the database.

This warning is shown whenever the path to be rendered is not a static string or symbol.

These warnings are often false positives, however, because it can be difficult to manipulate Rails' assumptions about paths to perform malicious behavior. Reports of dynamic render paths should be checked carefully to see if they can actually be manipulated maliciously by the user.

Unescaped parameter value
Open

<h1><%= person.display_name %></h1>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Render path contains parameter value
Open

  <%= render activities %>

When a call to render uses a dynamically generated path, template name, file name, or action, there is the possibility that a user can access templates that should be restricted. The issue may be worse if those templates execute code or modify the database.

This warning is shown whenever the path to be rendered is not a static string or symbol.

These warnings are often false positives, however, because it can be difficult to manipulate Rails' assumptions about paths to perform malicious behavior. Reports of dynamic render paths should be checked carefully to see if they can actually be manipulated maliciously by the user.

Mass assignment is not restricted using attr_accessible
Open

  class ApplicationRecord < ActiveRecord::Base

This warning comes up if a model does not limit what attributes can be set through mass assignment.

In particular, this check looks for attr_accessible inside model definitions. If it is not found, this warning will be issued.

Brakeman also warns on use of attr_protected - especially since it was found to be vulnerable to bypass. Warnings for mass assignment on models using attr_protected will be reported, but at a lower confidence level.

Note that disabling mass assignment globally will suppress these warnings.

Unescaped model attribute
Open

<div class="col-sm-6 col-md-4", data-object-id="<%= person.guid %>", data-person-name="<%= person.display_name %>", data-behavior="draggable">

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Render path contains parameter value
Open

  <%= render activities %>

When a call to render uses a dynamically generated path, template name, file name, or action, there is the possibility that a user can access templates that should be restricted. The issue may be worse if those templates execute code or modify the database.

This warning is shown whenever the path to be rendered is not a static string or symbol.

These warnings are often false positives, however, because it can be difficult to manipulate Rails' assumptions about paths to perform malicious behavior. Reports of dynamic render paths should be checked carefully to see if they can actually be manipulated maliciously by the user.

Unescaped model attribute
Open

<h3><%= t(".header") + " (#{current_user.contacts.count})" %></h3>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Severity
Category
Status
Source
Language