thi-ng/umbrella

View on GitHub

Showing 320 of 1,969 total issues

Function initTable has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

export const initTable = (opts: TableOpts, cells: (string | RawCell)[][]) => {
    const b = opts.border !== undefined ? opts.border : Border.ALL;
    const bH = b & Border.H ? 1 : 0;
    const bV = b & Border.V ? 1 : 0;
    const bF = (bH && bV) || b & Border.FRAME ? 1 : 0;
Severity: Minor
Found in packages/text-canvas/src/table.ts - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function entries has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

    *entries(key?: K, max = false): IterableIterator<Pair<K, V>> {
        let { head: node, cmp } = __private.get(this)!;
        let code: number | undefined;
        if (max) {
            while ((node = node.next[0])) {
Severity: Minor
Found in packages/associative/src/sorted-map.ts - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function partialRow has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

function* partialRow(
    pred: Predicate2<number>,
    queue: number[][],
    visited: BitField,
    x: number,
Severity: Minor
Found in packages/grid-iterators/src/flood-fill.ts - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function shaderSourceFromAST has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

export const shaderSourceFromAST = (
    spec: ShaderSpec,
    type: ShaderType,
    version: GLSLVersion,
    opts: Partial<DefShaderOpts> = {}
Severity: Minor
Found in packages/webgl/src/shader.ts - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function decodeBytes has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring.
Open

export const decodeBytes = (src: Uint8Array) => {
    const freq = new Uint32Array(FREQ).fill(1);
    const input = new BitInputStream(src);
    const nbits = input.length;
    const out = [];
Severity: Minor
Found in packages/range-coder/src/index.ts - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function kernelLookup2d has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

const kernelLookup2d = (
    src: ArrayLike<number>,
    x: number,
    y: number,
    width: number,
Severity: Minor
Found in packages/transducers/src/convolve.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function join has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

export const join = <A, B>(
    a: Set<A>,
    b: Set<B>
): Set<Pick<A, keyof A> & Pick<B, keyof B>> => {
    if (a.size && b.size) {
Severity: Minor
Found in packages/associative/src/join.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function delete has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

    delete(prefix: K, val?: V) {
        const n = prefix.length;
        if (n < 1) return false;
        const path: MultiTrie<K, V>[] = [];
        const key: string[] = [];
Severity: Minor
Found in packages/associative/src/multi-trie.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function bindUniforms has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

    bindUniforms(specUnis: UniformValues = {}) {
        const shaderUnis = this.uniforms;
        for (let id in specUnis) {
            const u = shaderUnis[id];
            if (u) {
Severity: Minor
Found in packages/webgl/src/shader.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function walk has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

export const walk = (
    subs: ISubscribable<any>[],
    opts?: Partial<DotOpts>,
    state?: WalkState
) => {
Severity: Minor
Found in packages/rstream-dot/src/index.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function hydrateTree has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

export const hydrateTree = <T>(
    opts: Partial<HDOMOpts>,
    impl: HDOMImplementation<any>,
    parent: T,
    tree: any,
Severity: Minor
Found in packages/hdom/src/dom.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function MIME_TYPES has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

export const MIME_TYPES = ((defs: any) => {
    const res: IObjectOf<string[]> = {};
    for (let groupID in defs) {
        const group = defs[groupID];
        for (let type in group) {
Severity: Minor
Found in packages/mime/src/index.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function remove has a Cognitive Complexity of 15 (exceeds 5 allowed). Consider refactoring.
Open

    remove(vec: T): boolean {
        if (this.has(vec)) {
            this._length--;
            this.freeIDs.push(vec.offset);
            const v = <CellVec<T>>vec;
Severity: Minor
Found in packages/vector-pools/src/linked-list.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function mutate has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

    mutate(tree: ASTNode<OP, T>, maxDepth = 1) {
        const { rnd, probMutate, maxDepth: limit } = this.opts;
        let loc = this.asZipper(tree).next!;
        if (!loc) return tree;
        while (true) {
Severity: Minor
Found in packages/gp/src/ast.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function fold has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

export const fold = (i: Readonly<Interval>, x: number, eps = DEFAULT_EPS) => {
    do {
        if ((i.lopen && x <= i.l) || (!i.lopen && x < i.l)) {
            x = x - i.l + i.r - (i.ropen ? eps : 0);
        } else if ((i.ropen && x >= i.r) || (!i.ropen && x > i.r)) {
Severity: Minor
Found in packages/intervals/src/index.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function joinWith has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

export const joinWith = <A, B>(
    a: Set<A>,
    b: Set<B>,
    kmap: { [id in keyof A]?: keyof B }
): Set<any> => {
Severity: Minor
Found in packages/associative/src/join.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function _resolve has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

const _resolve = (
    root: any,
    path: LookupPath,
    resolved: any,
    stack: string[],
Severity: Minor
Found in packages/resolve-map/src/index.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function xyPadRaw has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

export const xyPadRaw = (
    gui: IMGUI,
    id: string,
    x: number,
    y: number,
Severity: Minor
Found in packages/imgui/src/components/xypad.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function sliderVRaw has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

export const sliderVRaw = (
    gui: IMGUI,
    id: string,
    x: number,
    y: number,
Severity: Minor
Found in packages/imgui/src/components/sliderv.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function drawRect has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
Open

export const drawRect = <T extends any[] | TypedArray, P>(
    grid: IGrid2D<T, P>,
    x: number,
    y: number,
    w: number,
Severity: Minor
Found in packages/rasterize/src/rect.ts - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Severity
Category
Status
Source
Language