Assignment Branch Condition size for validate_stop_loss is too high. [21.93/15] Open
def validate_stop_loss(options, sell_or_buy)
price = options[:price]
stop_loss = options[:stopLossOnFill]
return if stop_loss.nil?
- Read upRead up
- Exclude checks
This cop checks that the ABC size of methods is not higher than the configured maximum. The ABC size is based on assignments, branches (method calls), and conditions. See http://c2.com/cgi/wiki?AbcMetric
Method has too many lines. [13/10] Open
def validate_stop_loss(options, sell_or_buy)
price = options[:price]
stop_loss = options[:stopLossOnFill]
return if stop_loss.nil?
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Perceived complexity for validate_stop_loss is too high. [8/7] Open
def validate_stop_loss(options, sell_or_buy)
price = options[:price]
stop_loss = options[:stopLossOnFill]
return if stop_loss.nil?
- Read upRead up
- Exclude checks
This cop tries to produce a complexity score that's a measure of the
complexity the reader experiences when looking at a method. For that
reason it considers when
nodes as something that doesn't add as much
complexity as an if
or a &&
. Except if it's one of those special
case
/when
constructs where there's no expression after case
. Then
the cop treats it as an if
/elsif
/elsif
... and lets all the when
nodes count. In contrast to the CyclomaticComplexity cop, this cop
considers else
nodes as adding complexity.
Example:
def my_method # 1
if cond # 1
case var # 2 (0.8 + 4 * 0.2, rounded)
when 1 then func_one
when 2 then func_two
when 3 then func_three
when 4..10 then func_other
end
else # 1
do_something until a && b # 2
end # ===
end # 7 complexity points
Cyclomatic complexity for validate_stop_loss is too high. [7/6] Open
def validate_stop_loss(options, sell_or_buy)
price = options[:price]
stop_loss = options[:stopLossOnFill]
return if stop_loss.nil?
- Read upRead up
- Exclude checks
This cop checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one.
Method validate_stop_loss
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
def validate_stop_loss(options, sell_or_buy)
price = options[:price]
stop_loss = options[:stopLossOnFill]
return if stop_loss.nil?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method validate
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def validate(pair_name, sell_or_buy, units, type, options)
Method validate_take_profit
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def validate_take_profit(options, sell_or_buy)
price = options[:price]
take_profit = options[:takeProfitOnFill]
return if take_profit.nil?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Line is too long. [114/80] Open
"stop_loss_on_fill.price is below price. price=#{price} stop_loss_on_fill.price=#{stop_loss[:price]}")
- Exclude checks
Line is too long. [86/80] Open
if sell_or_buy == :buy ? price < stop_loss[:price] : price > stop_loss[:price]
- Exclude checks
Line is too long. [89/80] Open
"below price. price=#{price} take_profit_on_fill.price=#{take_profit[:price]}")
- Exclude checks
Line is too long. [82/80] Open
should_be_positive_numeric('take_profit_on_fill.price', take_profit[:price])
- Exclude checks
Line is too long. [96/80] Open
raise_request_error('Invalid take_profit_on_fill error: take_profit_on_fill.price is ' \
- Exclude checks
Line is too long. [88/80] Open
if sell_or_buy == :buy ? price > take_profit[:price] : price < take_profit[:price]
- Exclude checks
Line is too long. [86/80] Open
should_be_positive_numeric('stop_loss_on_fill.distance', stop_loss[:distance])
- Exclude checks