Andrew Gassen

Navigating the world of software engineering or developer productivity insights can feel like trying to solve a complex puzzle, especially for large-scale organizations. It's one of those areas where having a cohesive strategy can make all the difference between success and frustration. Over the years, as I’ve worked with enterprise-level organizations, I’ve seen countless instances where a lack of strategy caused initiatives to fail or fizzle out.

In my latest webinar, I breakdown the key components engineering leaders need to consider when building an insights strategy.

Why a Strategy Matters

At the heart of every successful software engineering team is a drive for three things:

  1. A culture of continuous improvement
  2. The ability to move from idea to impact quickly, frequently, and with confidence
  3. A software organization delivering meaningful value

These goals sound simple enough, but in reality, achieving them requires more than just wishing for better performance. It takes data, action, and, most importantly, a cultural shift. And here's the catch: those three things don't come together by accident.

In my experience, whenever a large-scale change fails, there's one common denominator: a lack of a cohesive strategy. Every time I’ve witnessed a failed attempt at implementing new technology or making a big shift, the missing piece was always that strategic foundation. Without a clear, aligned strategy, you're not just wasting resources—you’re creating frustration across the entire organization.

5 Key Areas of Software Engineering Insights Strategy

Sign up for a free, expert-led insights strategy workshop for your enterprise org.

Step 1: Define Your Purpose

The first step in any successful engineering insights strategy is defining why you're doing this in the first place. If you're rolling out developer productivity metrics or an insights platform, you need to make sure there’s alignment on the purpose across the board.

Too often, organizations dive into this journey without answering the crucial question: Why do we need this data? If you ask five different leaders in your organization, are you going to get five answers, or will they all point to the same objective? If you can’t answer this clearly, you risk chasing a vague, unhelpful path.

One way I recommend approaching this is through the "Five Whys" technique. Ask why you're doing this, and then keep asking "why" until you get to the core of the problem. For example, if your initial answer is, “We need engineering metrics,” ask why. The next answer might be, “Because we're missing deliverables.” Keep going until you identify the true purpose behind the initiative. Understanding that purpose helps avoid unnecessary distractions and lets you focus on solving the real issue.

Step 2: Understand Your People

Once the purpose is clear, the next step is to think about who will be involved in this journey. You have to consider the following:

  1. Who will be using the developer productivity tool/insights platform?
  2. Are these hands-on developers or executives looking for high-level insights?
  3. Who else in the organization might need access to the data, like finance or operations teams?

It’s also crucial to account for organizational changes. Reorgs are common in the enterprise world, and as your organization evolves, so too must your insights platform. If the people responsible for the platform’s maintenance change, who will ensure the data remains relevant to the new structure? Too often, teams stop using insights platforms because the data no longer reflects the current state of the organization. You need to have the right people in place to ensure continuous alignment and relevance.

Step 3: Define Your Process

The next key component is process—a step that many organizations overlook. It's easy to say, "We have the data now," but then what happens? What do you expect people to do with the data once it’s available? And how do you track if those actions are leading to improvement?

A common mistake I see is organizations focusing on metrics without a clear action plan. Instead of just looking at a metric like PR cycle times, the goal should be to first identify the problem you're trying to solve. If the problem is poor code quality, then improving the review cycle times might help, but only because it’s part of a larger process of improving quality, not just for the sake of improving the metric.

It’s also essential to approach this with an experimentation mindset. For example, start by identifying an area for improvement, make a hypothesis about how to improve it, then test it and use engineering insights data to see if your hypothesis is correct. Starting with a metric and trying to manipulate it is a quick way to lose sight of your larger purpose.

Step 4: Program and Rollout Strategy

The next piece of the puzzle is your program and rollout strategy. It’s easy to roll out an engineering insights platform and expect people to just log in and start using it, but that’s not enough. You need to think about how you'll introduce this new tool to the various stakeholders across different teams and business units.
The key here is to design a value loop within a smaller team or department first. Get a team to go through the full cycle of seeing the insights, taking action, and then quantifying the impact of that action. Once you've done this on a smaller scale, you can share success stories and roll it out more broadly across the organization. It’s not about whether people are logging into the platform—it’s about whether they’re driving meaningful change based on the insights.

Step 5: Choose Your Platform Wisely

And finally, we come to the platform itself. It’s the shiny object that many organizations focus on first, but as I’ve said before, it’s the last piece of the puzzle, not the first. Engineering insights platforms like Code Climate are powerful tools, but they can’t solve the problem of a poorly defined strategy.

I’ve seen organizations spend months evaluating these platforms, only to realize they didn't even know what they needed. One company in the telecom industry realized that no available platform suited their needs, so they chose to build their own. The key takeaway here is that your platform should align with your strategy—not the other way around. You should understand your purpose, people, and process before you even begin evaluating platforms.

Looking Ahead

To build a successful engineering insights strategy, you need to go beyond just installing a tool. An insights platform can only work if it’s supported by a clear purpose, the right people, a well-defined process, and a program that rolls it out effectively. The combination of these elements will ensure that your insights platform isn’t just a dashboard—it becomes a powerful driver of change and improvement in your organization.

Remember, a successful software engineering insights strategy isn’t just about the tool. It’s about building a culture of data-driven decision-making, fostering continuous improvement, and aligning all your teams toward achieving business outcomes. When you get that right, the value of engineering insights becomes clear.

Want to build a tailored engineering insights strategy for your enterprise organization? Get expert recommendations at our free insights strategy workshop. Register here.

Andrew Gassen has guided Fortune 500 companies and large government agencies through complex digital transformations. He specializes in embedding data-driven, experiment-led approaches within enterprise environments, helping organizations build a culture of continuous improvement and thrive in a rapidly evolving world.


Output is not the same as impact. Flow is not the same as effectiveness. Most of us would agree with these statements—so why does the software industry default to output and flow metrics when measuring success? It’s a complex issue with multiple factors, but the elephant in the room is this: mapping engineering insights to meaningful business impact is far more challenging than measuring developer output or workflow efficiency.

Ideally, data should inform decisions. The problem arises when the wrong data is used to diagnose a problem that isn’t the real issue. Using misaligned metrics leads to misguided decisions, and unfortunately, we see this happen across engineering organizations of all sizes. While many companies have adopted Software Engineering Intelligence (SEI) platforms—whether through homegrown solutions or by partnering with company that specializes in SEI like Code Climate—a clear divide has emerged. Successful and mature organizations leverage engineering insights to drive real improvements, while others collect data without extracting real value—or worse, make decisions aimed solely at improving a metric rather than solving a real business challenge.

From our experience partnering with large enterprises with complex structures and over 1,000 engineers, we’ve identified three key factors that set high-performing engineering organizations apart.

1. Treating Software Engineering Insights as a Product

When platform engineering first emerged, early innovators adopted the mantra of “platform as a product” to emphasize the key principles that drive successful platform teams. The same mindset applies to Software Engineering Intelligence (SEI). Enterprise organizations succeed when they treat engineering insights as a product rather than just a reporting tool.

Data shouldn’t be collected for the sake of having it—it should serve a clear purpose: helping specific users achieve specific outcomes. Whether for engineering leadership, product teams, or executive stakeholders, high-performing organizations ensure that engineering insights are:

  • Relevant – Focused on what each audience actually needs to know.
  • Actionable – Providing clear next steps, not just numbers.
  • Timely – Delivered at the right moment to drive decisions.

Rather than relying on pre-built dashboards with generic engineering metrics, mature organizations customize reporting to align with team priorities and business objectives.

For example, one of our healthcare customers is evaluating how AI coding tools like GitHub Copilot and Cursor might impact their hiring plans for the year. They have specific questions to answer and are running highly tailored experiments, making a custom dashboard essential for generating meaningful, relevant insights. With many SEI solutions, they would have to externalize data into another system or piece together information from multiple pages, increasing overhead and slowing down decision-making.

High-performing enterprise organizations don’t treat their SEI solution as static. Team structures evolve, business priorities shift, and engineering workflows change. Instead of relying on one-size-fits-all reporting, they continuously refine their insights to keep them aligned with business and engineering goals. Frequent iteration isn’t a flaw—it’s a necessary feature, and the best organizations design their SEI operations with this in mind.

2. The Value of Code is Not the Code

Many software engineering organizations focus primarily on code-related metrics, but writing code is just one small piece of the larger business value stream—and rarely the area with the greatest opportunities for improvement. Optimizing code creation can create a false sense of progress at best and, at worst, introduce unintended bottlenecks that negatively impact the broader system.

High-performing engineering organizations recognize this risk and instead measure the effectiveness of the entire system when evaluating the impact of changes and decisions. Instead of focusing solely on PR cycle time or commit activity, top-performing teams assess the entire journey:

  • Idea generation – How long does it take to move from concept to development?
  • Development process – Are teams working efficiently? Are bottlenecks slowing down releases?
  • Deployment & adoption – Once shipped, how quickly is the feature adopted by users?
  • Business outcomes – Did the feature drive revenue, retention, or efficiency improvements?

For example, reducing code review time by a few hours may seem like an efficiency win, but if completed code sits for six weeks before deployment, that improvement has little real impact. While this may sound intuitive, in practice, it’s far more complicated—especially in matrixed or hierarchical organizations, where different teams own different parts of the system. In these environments, it’s often difficult, though not impossible, for one group to influence or improve a process owned by another.

One of our customers, a major media brand, had excellent coding metrics yet still struggled to meet sprint goals. While they were delivering work at the expected rate and prioritizing the right items, the perception of “failed sprints” persisted, creating tension for engineering leadership. After further analysis, we uncovered a critical misalignment: work was being added to team backlogs after sprints had already started, without removing any of the previously committed tasks. This shift in scope wasn’t due to engineering inefficiency—it stemmed from the business analysts' prioritization sessions occurring after sprint commitments were made. A simple rescheduling of prioritization ceremonies—ensuring that business decisions were finalized before engineering teams committed to sprint goals. This small yet system-wide adjustment significantly improved delivery consistency and alignment—something that wouldn’t have been possible without examining the entire end-to-end process.

3. Shifting from Tactical Metrics to Strategy

There are many frameworks, methodologies, and metrics often referenced as critical to the engineering insights conversation. While these can be useful, they are not inherently valuable on their own. Why? Because it all comes down to strategy. Focusing on managing a specific engineering metric or framework (i.e. DORA or SPACE) is missing the forest for the trees. Our most successful customers have a clear, defined, and well-communicated strategy for their software engineering insights program—one that doesn’t focus on metrics by name. Why? Because unless a metric is mapped to something meaningful to the business, it lacks the context to be impactful.

Strategic engineering leaders at large organizations focus on business-driven questions, such as:

  • Is this engineering investment improving customer experience?
  • Are we accelerating revenue growth?
  • Is this new approach or tool improving cross-functional collaboration?

Tracking software engineering metrics like cycle time, PR size, or deployment frequency can be useful indicators, but they are output metrics—not impact metrics. Mature organizations go beyond reporting engineering speed and instead ask: "Did this speed up product releases in a way that drove revenue?"

While challenging to measure, this is where true business value lies. A 10% improvement in cycle time may indicate progress, but if sales remain flat, did it actually move the needle? Instead of optimizing isolated metrics, engineering leaders should align their focus with overarching business strategy. If an engineering metric doesn’t directly map to a key strategic imperative, it’s worth reevaluating whether it’s the right thing to measure.

One of our retail customers accelerated the release of a new digital capability, allowing them to capture additional revenue a full quarter earlier than anticipated. Not only did this directly increase revenue, but the extended timeline of revenue generation created a long-term financial impact—a result that finance teams, investors, and the board highly valued. The team was able to trace their decisions back to insights derived from their engineering data, proving the direct connection between software delivery and business success.

Understanding the broader business strategy isn’t optional for high-performing engineering organizations—it’s a fundamental requirement. Through our developer experience surveys, we’ve observed a significant difference between the highest-performing organizations and the rest as it relates to how well developers understand the business impact they are responsible for delivering. Organizations that treat engineers as task-takers, isolated from business impact, consistently underperform—even if their coding efficiency is exceptional. The engineering leaders at top-performing organizations prioritize alignment with strategy and avoid the distraction of tactical metrics that fail to connect to meaningful business outcomes.

Learn how to shift from micro engineering adjustments to strategic business impact. Request a Code Climate Diagnostic.


Technology is evolving very quickly but I don't believe it's evolving as quickly as expectations for it. This has become increasingly apparent to me as I've engaged in conversations with Code Climate's customers, who are senior software engineering leaders across different organizations. While the technology itself is advancing rapidly, the expectations placed on it are evolving at an even faster pace, possibly twice as quickly.

New Technology: AI, No-Code/Low-Code, and SEI Platforms

There's Generative AI, such as Copilot, the No-code/Low-code space, and the concept of Software Engineering Intelligence (SEI) platforms, as coined by Gartner®. The promises associated with these tools seem straightforward:

  • Generative AI aims to accelerate, improve quality, and reduce costs.
  • No-code and Low-code platforms promise faster and cheaper software development accessible to anyone.
  • SEI platforms such as Code Climate enhance productivity measurement for informed decisions leading to faster, efficient, and higher-quality outcomes.

However, the reality isn’t as straightforward as the messaging may seem:

  • Adopting Generative AI alone can lead to building the wrong things faster.
  • No-code or Low-code tools are efficient until you hit inherent limitations, forcing cumbersome workarounds that reduce maintainability and create new challenges compared to native code development.
  • As for SEI platforms, as we've observed with our customers, simply displaying data isn't effective if you lack the strategies to leverage it.

When I joined Code Climate a year ago, one recurring question from our customers was, "We see our data, but what's the actionable next step?" While the potential of these technologies is compelling, it's critical to address and understand their practical implications. Often, business or non-technical stakeholders embrace the promises while engineering leaders, responsible for implementation, grapple with the complex realities.

Navigating New Technology Expectations and Realities

Software engineering leaders now face increased pressure to achieve more with fewer resources, often under metrics that oversimplify their complex responsibilities. It's no secret that widespread layoffs have affected the technology industry in recent years. Despite this, the scope of their responsibilities and the outcomes expected from them by the business haven't diminished. In fact, with the adoption of new technologies, these expectations have only increased.

Viewing software development solely in terms of the number of features produced overlooks critical aspects such as technical debt or the routine maintenance necessary to keep operations running smoothly. Adding to that, engineering leaders are increasingly pressured to solve non-engineering challenges within their domains. This disconnect between technical solutions and non-technical issues highlights a fundamental gap that can't be bridged by engineering alone—it requires buy-in and understanding from all stakeholders involved.

This tension isn't new, but it's becoming front-and-center thanks to the promises of new technologies mentioned above. These promises create higher expectations for business leaders, which, in turn, trickle down to engineering leaders who are expected to navigate these challenges, which trickle down to the teams doing the work. Recently, I had a conversation with a Code Climate customer undergoing a significant adoption of GitHub Copilot, a powerful tool. This particular leader’s finance team told her, "We bought this new tool six months ago and you don't seem to be operating any better. What's going on?" This scenario reflects the challenges many large engineering organizations face.

Navigating New Technology Challenges and Taking Action

Here's how Code Climate is helping software engineering leaders take actionable steps to address challenges with new technology:

  1. Acknowledging the disconnect with non-technical stakeholders, fostering cross-functional alignment and realistic expectations. Facilitating open discussions between technology and business leaders, who may never have collaborated before, is crucial for progress.
  2. Clearly outlining the broader scope of engineering challenges beyond just writing code—evaluating processes like approval workflows, backlog management, and compliance mandates. This holistic view provides a foundation for informed discussions and solutions.
  3. Establishing a shared understanding and language for what constitutes a healthy engineering organization is essential.

In addition, we partner with our enterprise customers to experiment and assess the impact of new technologies. For instance, let's use the following experiment template to justify the adoption of Copilot:

We believe offering Copilot to _______ for [duration] will provide sufficient insights to inform our purchasing decision for a broader, organization-wide rollout.

We will know what our decision is if we see ______ increase/decrease.

Let’s fill in the blanks:


We believe offering Copilot to one portfolio of 5 teams for one quarter will provide sufficient insights to inform our purchasing decision for a broader, organization-wide rollout.

We will know what our decision is if we see:

  • An increase in PR Throughput
  • A decrease in Cycle Time
  • No negative impact to Rework
  • No negative impact to Defect Rate

Andrew Gassen leads Code Climate's enterprise customer organization, partnering with engineering leaders for organization-wide diagnostics to identify critical focus areas and provide customized solutions. Request a consultation to learn more.

Mapping Engineering Goals to Business Outcomes

When an engineer is deep in code, fixing a bug or completing a review, it can be hard to connect the dots between these actions and what seem like unrelated company objectives. In traditionally structured organizations, the business sets goals for engineering based on its understanding of the market, customer needs, and the numbers it must achieve to appease investors. Without a clear understanding of how engineering activities impact business objectives, it’s difficult for engineering leaders to make informed strategic decisions, keep teams aligned, advocate for resources, or communicate successes. Engineering leaders must understand these business objectives, map their work to them, and clearly communicate them to engineering teams and non-technical stakeholders.

Start With Why

Often, engineering is seen as a cost center, but in reality, it’s the main driver of revenue in many modern companies. When leaders help their teams understand the “why” behind their work, engineers can let go of the expectation that they must be busy and replace it with the expectation that they must create value. After all, building something right doesn’t matter if it’s not the right thing.

So, how do engineering leaders ensure that their teams’ work is aligned with the business's goals?

Discover Business Outcomes Driven by Engineering Work

Imagine a retail business that sells sporting goods. They want to allow shoppers to easily bundle gloves, sunglasses, baseball bats, and other baseball gear on their e-commerce site. To do this, engineering is tasked with building a widget that offers shoppers pre-defined selections, provides recommendations based on data about the shopper, and reveals an increased discount as more items are bundled. The goal is to have this feature live in February to capture sales for the spring sports season.

To understand the work that will go into this project and balance it with other priorities, engineering leaders should ask the following questions.

  1. What happens if it doesn’t get done? In this case, if the project isn’t done in February, the business risks missing its Q1 revenue targets. If it’s not completed according to spec, it may have other consequences depending on what changed. And if it’s not completed at all, the company may experience lower sales volume over a longer period of time.
  2. How does it benefit customers? The customers who care about a baseball gear bundle are likely parents of youth baseball players. The problem it solves for them is that it makes shopping easier, and it’s worth solving now because parents want an easy way to buy new gear at the beginning of the season.
  3. What happens if it gets completed earlier or better? There are no benefits to completing this project ahead of time, because before February, it will still be basketball season and parents won’t yet be shopping for baseball gear. However, if it’s completed with better quality, it may result in a higher checkout success rate, larger cart sizes, more sales, and ultimately more revenue. The final question in this set is what happens if it’s implemented differently. In this case, it depends on what changed.

All of these questions are intended to spark a conversation between engineering and business partners so they can understand the full scope of the request and produce the best possible outcome.

Frame Engineering Work According to Outcomes

By asking the questions above, the engineering team can learn three important things to guide their approach to the project.

  1. The deadline matters, but going faster doesn’t. To deliver this feature on time, engineering should keep speed-related metrics consistent, but they don’t need to improve them to achieve the goal.
  2. Levers can be used to optimize the result and prioritize the work. Finding ways to increase the cart size or the success rate at checkout can produce even better results for the business.
  3. There is a financial goal associated with this work. It’s clear to everyone on the team how their work impacts the business. If additional resources are needed to deliver the feature, it’s reasonable for engineering to pause other projects or ask to add members to the team.

At the beginning of the project, the engineering leader should look at other work in progress and complete a simple cost-benefit analysis to properly prioritize work. They may discover that another project, which is focused on redesigning the mobile app, has a low number of weekly coding days because the team is investing in research. Since it’s still in the research phase, the team doesn’t yet know the financial impact of a mobile redesign. However, they do know the expected impact of the baseball bundle widget, so shifting resources to it from the mobile redesign will redirect those resources to generating revenue instead of investing in a long-term project with an unclear return.

As the widget progresses, engineering metrics may reveal other changes that need to be made in order to meet the project’s requirements. For example, a high amount of Rework may indicate that work isn’t being planned properly, resulting in duplicated effort and wasted time. Or a large PR Size combined with slow Review Cycles may reveal that one person is handling all the PR reviews, so folks are batching up large amounts of work in each PR.

With an understanding of the tradeoffs inherent in the project, and the knowledge that a delayed or poor-quality widget would significantly impact revenue, an engineering leader would likely decide to make a change to resolve these issues. They might, for example, consider adding a dedicated project manager (PM) to the team to help improve the flow of work. A cost-benefit analysis will show that adding a dedicated PM can improve Traceability, Rework, and developer productivity, allowing the team to release the baseball bundle widget on time. This can result in a net gain of the projected sales from the bundle in Q1 due to increased cart size and checkout success.

Measure and Communicate the Success of Engineering Goals

The right data and context help developers connect the dots between their work and company objectives. Even bug fixes and code reviews carry a different weight when they’re seen in the context of a larger goal, like delivering the baseball bundle widget on time to meet Q1 revenue targets. Asking the questions outlined above and gathering insights in a Software Engineering Intelligence (SEI) Platform helps leaders map engineering work to business outcomes and clearly communicate them across the board.

Request a consultation to learn more.

 Never Miss an Update

Get the latest insights on developer productivity and engineering excellence delivered to your inbox.