
Your engineering speed is your organization’s competitive advantage. A fast Cycle Time will help you out-innovate your competitors while keeping your team nimble and motivated. It’ll help you keep feedback loops short and achieve the agility necessary to respond to issues quickly. Most importantly, it’ll align everyone – from the CTO to the individual engineer – around what success means.
To discuss Cycle Time and its implications, we invited a panel of engineering leaders and industry experts for a virtual round table.
Code Climate Founder and Former CEO, Bryan Helmkamp, was joined by:
Over the course of the hour, these panelists covered topics such as using metrics to design processes that work for your team, building trust around metrics, and tying delivery speed to business success.
Here are some of the key takeaways:
Bryan Helmkamp: When I think about Cycle Time, I think about the time period during which code is in-flight. And so I would start counting that from the point that the code is initially written, so ideally, the time that that code is being typed into an editor and saved on a developer’s laptop or committed initially, shortly thereafter. Then I would measure that through to the point where the code has reached our production server then deployed to production.
Bala Pitchandi: I define Cycle Time as when the first line of code is written for a feature — or chore, or ticket, or whatever that may be — to when it gets merged.
Bryan Helmkamp: I think it’s also important to point out that we shouldn’t let the metrics become the goal in and of themselves. We’re talking about Cycle Time but really, what we’re talking about is probably more accurately described as innovation. And you can have cases where you’ll have a lower Cycle Time, but you’ll have less innovation. It can be a useful shorthand to talk about (e.g., we’re going to improve this metric), but really that comes from an objective that is not the metric. It comes from some shared goal. That understanding matters much more than the exact specific definition of Cycle Time that you use because really you’re going to be using it to understand directionality: are things getting better? Are they things getting faster or slower? Where are the opportunities to improve? And for that purpose, it doesn’t really matter all that much whether it’s from the first commit or the last commit or whether the deploy is included; you can get a lot of the value regardless of how you define the sort of thing.

Bala Pitchandi: When I was pitching this to our executive team and our leadership team, I used the analogy of Amazon and Walmart. Most people think that Amazon and Walmart are competing against each other on their prices. But keeping aside the technology parts of Amazon, they’re basically retailers. They both sell the same kind of goods, more or less, but in reality, they’re competing against each other on their supply chain. In other words, you could sell the same goods, but if you have a better supply chain, you can out-execute and be a better business than the other company, which may be doing the exact same thing as you are. And I think that I was able to translate that to the software world by pointing out that we could be building the same exact software as another company, but if we have a better software delivery vehicle or software delivery engine, that will result in better business goals, business revenue, and business outcomes. That resonated well, and that way, I was able to get buy-in from the leadership team.

Katie Womersley: The most interesting business discovery we’ve had from using Cycle Time has been where it’s been slow. It’s been a misunderstanding on the team about what is agile, where we’ve thought, “Oh, we’re very agile.” Because we’ve had situations where we’re actually changing what we’re trying to ship in PRs — we’re reworking lines of code because we think that we’re evolving by collaborating between product managers and engineers with the PM changing their mind every day about what exactly the feature is. And the engineer says, “I’ll start again, I’ll start again, I’ll start again.” And the team in question felt this was just highly collaborative and extremely agile, so that was fascinating because, of course, that’s just not effective at all. You’re supposed to actually get something into production and then learn from it, not just iterate on your PRs in progress. We actually need some clarity before we start coding, and I do believe that that had business impact on knowing what we were shipping.

Bala Pitchandi: We believe in this concept of failing fast. We want to be able to have a small enough Cycle Time to ship customers something quickly. Maybe it’s a bet on the product side, and wanting to ship it fast, sooner and get it into the customer’s hands, our beta users hands, and then see if it actually sticks and if we’ve been able to find the product market fit. That failing fast is really valuable, especially if you are in the early stage of a product. You really want to get quick iteration and get early feedback and then come back and refine your product thinking and product ideas.

Katie Womersley: I got quite a bit of pushback on wanting to decrease Cycle Time. Engineers were really enjoying having work-in-progress PRs. They liked being able to say: well, here’s the shape of something, and how it could look as a technical exploration, and some of that was actually valid… But the real concern here is, we are using metrics as a way to have data-informed discussions. It’s a jumping-off point for discussion. It is not a performance tracking tool. And that seems to be the number one thing, and that’s important. We’re not trying to stack rank who has the most productive impact and then fire the bottom 30%. We’re trying to understand at a systems level where there are blockages in our pipes; we’re trying to look at engineering as a system and see how well it’s working. I think that’s very, very important to communicate. I think for software engineering in general, we have a great culture for the most part of blameless postmortems, understanding human factors in engineering, and not attributing outages solely to human error. Basically, you want to take that mindset that you already have from incident response and incident management, and you want to apply that now into team process management as well.

Bonnie Aumann: Esther Derby has a podcast called Tea And The Law Of Raspberry Jam, which actually has an entire episode on coaching past resistance, and the most important part is actually to try to take that word out of your vocabulary. Resistance almost always comes from somebody who really cares and sees value in what is happening. And if you can understand where they’re coming from, you can learn better about how you might introduce something and get a better idea of what will benefit the team and the company. And it’s not to say that you need to be held hostage by one cranky person, but that one cranky person might just have liked a little bit more information for you than you knew before.

Bryan Helmkamp: In speaking with so many engineering organizations and getting started with data and insights, I think it can feel a little bit difficult to get started. It can feel a little bit like, “We have to get this exactly right.” And it’s common that people, as with anything, will make some mistakes along the way. So my recommendations for that are, give yourself the space to start small, maybe just looking at even one tactical thing. “How long is it taking for us to get code reviews turned around?” is a great example. Really focus on building up trust through the organization because trust is a muscle. And as you exercise it, it’s going to grow. Incrementally paint the picture to the team of what you’re trying to achieve and give them the why behind it, not just the what.

Katie Womersley: Something that we do – and this is really controversial – but the vast amount of PRs are merged without review. This will probably shock many people, and the reason we do that is in every asynchronous team: when you’re waiting for review, you lose context…We have a rating system for our PRs. In fact, most of them are small PRs. They’re uncontroversial changes. And we actually don’t need that developer to wait a whole day for somebody to come online to say: ‘Arms up, let’s march.’ It’s just not that risky. Also, we’re in social media management. We don’t make pacemakers. Just from a business perspective: how badly wrong can things go? Most of our PRs are absolutely safe to merge without review. And then you will get PR comments, which are aimed at individual growth and performance, saying this could have been done in a cleaner way, for example. And then on the next PR, hopefully, the engineer would incorporate that advice.
For high profile PRs (e.g., you’re changing Login, you’re changing Billing), yes, that needs to get reviewed before going out … Most people will say it’s really important to have code reviewed before you merge things. And is that nice to do? Yes, it is. But in our very asynchronous team, what is the effect of doing that? Actually, it is a negative effect. So a lot of our code does not get reviewed before merge.
Bala Pitchandi: I couldn’t agree more on the over-relying on reviews. At VTS, we do pair programming a lot. Even when two developers were paired on a PR, we used to still require a third person to review. Later, we just figured that two people working on a PR is enough of a review, so that if you’re pairing on a PR, you just merge it.
Bala Pitchandi: I guess, of all the bad things that happened with the global pandemic, one benefit was that we all went distributed. Our Cycle Time actually went down by 20% without having to do anything. Something that you often hear about engineers is that they’re always complaining about distraction. There’s too much noise, people are talking, they want a noise-canceling headset. We were like, you know what? There is actually truth to that because when everyone went remote, guess what? There was less distraction, they had more heads-down time, and they were actually able to contribute to getting the code through the pipeline lot faster. And then we were able to build on that. Focusing on the team-level metrics and encouraging the teams to really focus on their own things that they care about was really helpful.
Bonnie Aumann: We’ve been remote from the beginning. The pandemic made everything more intense. I think is what we really learned. And the thing that became harder was making sure that people took the time and space to actually turn off and recharge. One of the anti-pattern practices is that on a team of very senior people, each person will take something to do and then push it forward. But then, of course, your overall Cycle Time on each of those goes down because you haven’t focused on pushing it all the way through. I think there’s been a lot of cultural outreach from managers to employees to be like, have you hydrated today? Have you done your basic care? When was the last time you saw the sky? It makes it more of a complete package.
Katie Womersley: I have a great mini-anecdote on that. We switched to a four-day workweek to get ahead of burnout with the pandemic. And what we saw in our data was, while the number of coding days went down; obviously, it’s a four-day workweek. We actually saw a productive impact score go up across every single team…We’re getting more done in four days than we were in five days, which is completely wild, but we can show that’s working. We’re in company planning discussions now, and we’re asking, “Should we move back to a five-day workweek to get our goals achieved?” But the data actually shows that we’ll get less done because people will be more burned out.
Bonnie Aumann: I think it’s complicated, but I’ll try and narrow it down. An absolute unit of agile is feedback and feedback cycles. When you’re looking at a thing like Cycle Time, it is a tool to let you know how fast you’re going, but it’s just information. What you do with that information is up to you. If you see people are working seven days a week and you think that’s a good thing, then you’re going to use it to make sure that it’s a good thing.
I will say that one of the things that is beneficial of doing agile by the book, particularly if you’re doing it by The Art of Agile Development or some of the books that really get down into the nitty-gritty, is that you have everybody speaking the same language, you have people using the same words. Because one of the hardest things about getting good metrics on a multi-team situation is making sure that people are using words the same way. And when something opens and when something closes, is when something starts and when something finishes. If you’re using Trello in one place and JIRA in another place, and GitHub issues in a third place, getting that overall view of what your data is, is challenging.
Katie Womersley: It’s so important to look at your metrics and figure out what actually works with the team you have and the situation you’re in, and not just listen to a bunch of people on a panel and be like, “We must do that.”

Bryan Helmkamp: Your point reminded me of an interesting quote about agile and just this idea of process adherence becoming the goal in and of itself. I think the quote was something like, if you’re doing agile exactly like the book, you’re not actually doing agile. It’s inherent. To bring this around to Cycle Time and data, the answers are different for every team. But what I think is really powerful is that by having a more clear objective understanding of what’s going on, that opens the door to more experimentation. And so it can free up a team to maybe try a different process than the rest of the org for a while. Without it just being like: Well, we feel this or that, and being able to combine both of those things into a data-informed discussion afterward about how it went and being able to be more flexible despite the fact that data may make everything feel more concrete.


Navigating the world of software engineering or developer productivity insights can feel like trying to solve a complex puzzle, especially for large-scale organizations. It's one of those areas where having a cohesive strategy can make all the difference between success and frustration. Over the years, as I’ve worked with enterprise-level organizations, I’ve seen countless instances where a lack of strategy caused initiatives to fail or fizzle out.
In my latest webinar, I breakdown the key components engineering leaders need to consider when building an insights strategy.
At the heart of every successful software engineering team is a drive for three things:
These goals sound simple enough, but in reality, achieving them requires more than just wishing for better performance. It takes data, action, and, most importantly, a cultural shift. And here's the catch: those three things don't come together by accident.
In my experience, whenever a large-scale change fails, there's one common denominator: a lack of a cohesive strategy. Every time I’ve witnessed a failed attempt at implementing new technology or making a big shift, the missing piece was always that strategic foundation. Without a clear, aligned strategy, you're not just wasting resources—you’re creating frustration across the entire organization.

Sign up for a free, expert-led insights strategy workshop for your enterprise org.
The first step in any successful engineering insights strategy is defining why you're doing this in the first place. If you're rolling out developer productivity metrics or an insights platform, you need to make sure there’s alignment on the purpose across the board.
Too often, organizations dive into this journey without answering the crucial question: Why do we need this data? If you ask five different leaders in your organization, are you going to get five answers, or will they all point to the same objective? If you can’t answer this clearly, you risk chasing a vague, unhelpful path.
One way I recommend approaching this is through the "Five Whys" technique. Ask why you're doing this, and then keep asking "why" until you get to the core of the problem. For example, if your initial answer is, “We need engineering metrics,” ask why. The next answer might be, “Because we're missing deliverables.” Keep going until you identify the true purpose behind the initiative. Understanding that purpose helps avoid unnecessary distractions and lets you focus on solving the real issue.
Once the purpose is clear, the next step is to think about who will be involved in this journey. You have to consider the following:
It’s also crucial to account for organizational changes. Reorgs are common in the enterprise world, and as your organization evolves, so too must your insights platform. If the people responsible for the platform’s maintenance change, who will ensure the data remains relevant to the new structure? Too often, teams stop using insights platforms because the data no longer reflects the current state of the organization. You need to have the right people in place to ensure continuous alignment and relevance.
The next key component is process—a step that many organizations overlook. It's easy to say, "We have the data now," but then what happens? What do you expect people to do with the data once it’s available? And how do you track if those actions are leading to improvement?
A common mistake I see is organizations focusing on metrics without a clear action plan. Instead of just looking at a metric like PR cycle times, the goal should be to first identify the problem you're trying to solve. If the problem is poor code quality, then improving the review cycle times might help, but only because it’s part of a larger process of improving quality, not just for the sake of improving the metric.
It’s also essential to approach this with an experimentation mindset. For example, start by identifying an area for improvement, make a hypothesis about how to improve it, then test it and use engineering insights data to see if your hypothesis is correct. Starting with a metric and trying to manipulate it is a quick way to lose sight of your larger purpose.
The next piece of the puzzle is your program and rollout strategy. It’s easy to roll out an engineering insights platform and expect people to just log in and start using it, but that’s not enough. You need to think about how you'll introduce this new tool to the various stakeholders across different teams and business units.
The key here is to design a value loop within a smaller team or department first. Get a team to go through the full cycle of seeing the insights, taking action, and then quantifying the impact of that action. Once you've done this on a smaller scale, you can share success stories and roll it out more broadly across the organization. It’s not about whether people are logging into the platform—it’s about whether they’re driving meaningful change based on the insights.
And finally, we come to the platform itself. It’s the shiny object that many organizations focus on first, but as I’ve said before, it’s the last piece of the puzzle, not the first. Engineering insights platforms like Code Climate are powerful tools, but they can’t solve the problem of a poorly defined strategy.
I’ve seen organizations spend months evaluating these platforms, only to realize they didn't even know what they needed. One company in the telecom industry realized that no available platform suited their needs, so they chose to build their own. The key takeaway here is that your platform should align with your strategy—not the other way around. You should understand your purpose, people, and process before you even begin evaluating platforms.
To build a successful engineering insights strategy, you need to go beyond just installing a tool. An insights platform can only work if it’s supported by a clear purpose, the right people, a well-defined process, and a program that rolls it out effectively. The combination of these elements will ensure that your insights platform isn’t just a dashboard—it becomes a powerful driver of change and improvement in your organization.
Remember, a successful software engineering insights strategy isn’t just about the tool. It’s about building a culture of data-driven decision-making, fostering continuous improvement, and aligning all your teams toward achieving business outcomes. When you get that right, the value of engineering insights becomes clear.
Want to build a tailored engineering insights strategy for your enterprise organization? Get expert recommendations at our free insights strategy workshop. Register here.
Andrew Gassen has guided Fortune 500 companies and large government agencies through complex digital transformations. He specializes in embedding data-driven, experiment-led approaches within enterprise environments, helping organizations build a culture of continuous improvement and thrive in a rapidly evolving world.

Most organizations are great at communicating product releases—but rarely do the same for process improvements that enable those releases. This is a missed opportunity for any leader wanting to expand “growth mindset,” as curiosity and innovation is as critical for process improvement as it is product development.
Curiosity and innovation aren’t limited to product development. They’re just as essential in how your teams deliver that product. When engineering and delivery leaders share what they’re doing to find efficiencies and unclog bottlenecks, they not only improve Time to Value — they help their peers level up too.
Below is a template leaders can use via email or communication app (Slack, Microsoft Teams) to share process changes with their team. I’ve personally seen updates like this generate the same level of energy as product announcements—complete with clap emojis👏 and follow-up pings like “Tell me more!” Even better, they’re useful for performance reviews and make great resume material for the leads who author them (excluding any sensitive or proprietary content, of course).
Subject: [Experiment update]
[Date]
Experiment Lead: [Name]
Goal: [Enter the longer term goal your experiment was in service of]
Opportunity: [Describe a bottleneck or opportunity you identified for some focused improvement]
Problem: [Describe the specific problem you aimed to solve]
Solution: [Describe the very specific solution you tested]
Metric(s): [What was the one metric you determined would help you know if your solution solved the problem? Were there any additional metrics you kept track of, to understand how they changed as well?]
Action: [Describe, in brief, what you did to get the result]
Result: [What was the result of the experiment, in terms of the above metrics?]
Next Step: [What will you do now? Will you run another experiment like this, design a new one, or will you rollout the solution more broadly?]
Key Learnings: [What did you learn during this experiment that is going to make your next action stronger?]
Please reach out to [experiment lead’s name] for more detail.
Subject: PR Descriptions Boost Review Speed by 30%
March 31, 2025
Experiment Lead: Mary O’Clary
Goal: We must pull a major capability from Q4 2024 into Q2 2025 to increase our revenue. We believe we can do this by improving productivity by 30%.
Opportunity: We found lack of clear descriptions were a primary cause of churn & delay during the review cycle. How might we improve PR descriptions, with information reviewers need?
Problem: Help PR Reviewers more regularly understand the scope of PRs, so they don’t need to ask developers a bunch of questions.
Solution: Issue simple guidelines for what we are looking for PR descriptions
Metric(s): PR Review Speed. We also monitored overall PR Cycle Time, assuming it would also improve for PRs closed within our experiment timeframe.
Action: We ran this experiment over one 2 week sprint, with no substantial changes in complexity of work or composition of the team. We kept the timeframe tight to help eliminate additional variables.
Result: We saw PR Review Speed increase by 30%
Next Step: Because of such a great result and low perceived risk, we will roll this out across Engineering and continue to monitor both PR Review Speed & PR Cycle Time.
Key Learnings: Clear, consistent PR descriptions reduce reviewer friction without adding developer overhead, giving us confidence to expand this practice org-wide to help accelerate key Q2 2025 delivery.
Please reach out to Mary for more detail.
My recommendation is to appoint one “editor in chief” to issue these updates each week. They should CC the experiment lead on the communication to provide visibility. In the first 4-6 weeks, this editor may need to actively solicit reports and coach people on what to share. This is normal—you’re building a new behavior. During that time, it's critical that managers respond to these updates with kudos and support, and they may need to be prompted to do so in the first couple of weeks.
If these updates become a regular ritual, within ~3 months, you’ll likely have more contributions than you can keep up with. That’s when the real cultural shift happens: people start sharing without prompting, and process improvement becomes part of how your org operates.
I’ve seen this work in large-scale organizations, from manufacturing to healthcare. Whether your continuous improvement culture is just getting started or already mature, this small practice can help you sustain momentum and deepen your culture of learning.
Give it a shot, and don’t forget to celebrate the wins along the way.
Jen Handler is the Head of Professional Services at Code Climate. She’s an experienced technology leader with 20 years of building teams that deliver outcome-driven products for Fortune 50 companies across industries including healthcare, hospitality, retail, and finance. Her specialties include goal development, lean experimentation, and behavior change.

Output is not the same as impact. Flow is not the same as effectiveness. Most of us would agree with these statements—so why does the software industry default to output and flow metrics when measuring success? It’s a complex issue with multiple factors, but the elephant in the room is this: mapping engineering insights to meaningful business impact is far more challenging than measuring developer output or workflow efficiency.
Ideally, data should inform decisions. The problem arises when the wrong data is used to diagnose a problem that isn’t the real issue. Using misaligned metrics leads to misguided decisions, and unfortunately, we see this happen across engineering organizations of all sizes. While many companies have adopted Software Engineering Intelligence (SEI) platforms—whether through homegrown solutions or by partnering with company that specializes in SEI like Code Climate—a clear divide has emerged. Successful and mature organizations leverage engineering insights to drive real improvements, while others collect data without extracting real value—or worse, make decisions aimed solely at improving a metric rather than solving a real business challenge.
From our experience partnering with large enterprises with complex structures and over 1,000 engineers, we’ve identified three key factors that set high-performing engineering organizations apart.
When platform engineering first emerged, early innovators adopted the mantra of “platform as a product” to emphasize the key principles that drive successful platform teams. The same mindset applies to Software Engineering Intelligence (SEI). Enterprise organizations succeed when they treat engineering insights as a product rather than just a reporting tool.
Data shouldn’t be collected for the sake of having it—it should serve a clear purpose: helping specific users achieve specific outcomes. Whether for engineering leadership, product teams, or executive stakeholders, high-performing organizations ensure that engineering insights are:
Rather than relying on pre-built dashboards with generic engineering metrics, mature organizations customize reporting to align with team priorities and business objectives.
For example, one of our healthcare customers is evaluating how AI coding tools like GitHub Copilot and Cursor might impact their hiring plans for the year. They have specific questions to answer and are running highly tailored experiments, making a custom dashboard essential for generating meaningful, relevant insights. With many SEI solutions, they would have to externalize data into another system or piece together information from multiple pages, increasing overhead and slowing down decision-making.
High-performing enterprise organizations don’t treat their SEI solution as static. Team structures evolve, business priorities shift, and engineering workflows change. Instead of relying on one-size-fits-all reporting, they continuously refine their insights to keep them aligned with business and engineering goals. Frequent iteration isn’t a flaw—it’s a necessary feature, and the best organizations design their SEI operations with this in mind.
Many software engineering organizations focus primarily on code-related metrics, but writing code is just one small piece of the larger business value stream—and rarely the area with the greatest opportunities for improvement. Optimizing code creation can create a false sense of progress at best and, at worst, introduce unintended bottlenecks that negatively impact the broader system.
High-performing engineering organizations recognize this risk and instead measure the effectiveness of the entire system when evaluating the impact of changes and decisions. Instead of focusing solely on PR cycle time or commit activity, top-performing teams assess the entire journey:
For example, reducing code review time by a few hours may seem like an efficiency win, but if completed code sits for six weeks before deployment, that improvement has little real impact. While this may sound intuitive, in practice, it’s far more complicated—especially in matrixed or hierarchical organizations, where different teams own different parts of the system. In these environments, it’s often difficult, though not impossible, for one group to influence or improve a process owned by another.
One of our customers, a major media brand, had excellent coding metrics yet still struggled to meet sprint goals. While they were delivering work at the expected rate and prioritizing the right items, the perception of “failed sprints” persisted, creating tension for engineering leadership. After further analysis, we uncovered a critical misalignment: work was being added to team backlogs after sprints had already started, without removing any of the previously committed tasks. This shift in scope wasn’t due to engineering inefficiency—it stemmed from the business analysts' prioritization sessions occurring after sprint commitments were made. A simple rescheduling of prioritization ceremonies—ensuring that business decisions were finalized before engineering teams committed to sprint goals. This small yet system-wide adjustment significantly improved delivery consistency and alignment—something that wouldn’t have been possible without examining the entire end-to-end process.
There are many frameworks, methodologies, and metrics often referenced as critical to the engineering insights conversation. While these can be useful, they are not inherently valuable on their own. Why? Because it all comes down to strategy. Focusing on managing a specific engineering metric or framework (i.e. DORA or SPACE) is missing the forest for the trees. Our most successful customers have a clear, defined, and well-communicated strategy for their software engineering insights program—one that doesn’t focus on metrics by name. Why? Because unless a metric is mapped to something meaningful to the business, it lacks the context to be impactful.
Strategic engineering leaders at large organizations focus on business-driven questions, such as:
Tracking software engineering metrics like cycle time, PR size, or deployment frequency can be useful indicators, but they are output metrics—not impact metrics. Mature organizations go beyond reporting engineering speed and instead ask: "Did this speed up product releases in a way that drove revenue?"
While challenging to measure, this is where true business value lies. A 10% improvement in cycle time may indicate progress, but if sales remain flat, did it actually move the needle? Instead of optimizing isolated metrics, engineering leaders should align their focus with overarching business strategy. If an engineering metric doesn’t directly map to a key strategic imperative, it’s worth reevaluating whether it’s the right thing to measure.
One of our retail customers accelerated the release of a new digital capability, allowing them to capture additional revenue a full quarter earlier than anticipated. Not only did this directly increase revenue, but the extended timeline of revenue generation created a long-term financial impact—a result that finance teams, investors, and the board highly valued. The team was able to trace their decisions back to insights derived from their engineering data, proving the direct connection between software delivery and business success.
Understanding the broader business strategy isn’t optional for high-performing engineering organizations—it’s a fundamental requirement. Through our developer experience surveys, we’ve observed a significant difference between the highest-performing organizations and the rest as it relates to how well developers understand the business impact they are responsible for delivering. Organizations that treat engineers as task-takers, isolated from business impact, consistently underperform—even if their coding efficiency is exceptional. The engineering leaders at top-performing organizations prioritize alignment with strategy and avoid the distraction of tactical metrics that fail to connect to meaningful business outcomes.
Learn how to shift from micro engineering adjustments to strategic business impact. Request a Code Climate Diagnostic.

Code Climate has supported thousands of engineering teams of all sizes over the past decade, enhancing team health, advancing DevOps practices, and providing visibility into engineering processes. According to Gartner®, the Software Engineering Intelligence (SEI) platform market is expanding as engineering leaders increasingly leverage these platforms to enhance productivity and drive business value. As pioneers in the SEI space, the Code Climate team has identified three key takeaways from partnerships with our Fortune 100 customers:
The above takeaways have prompted a strategic shift in Code Climate’s roadmap, now centered on enterprise organizations with complex engineering team structure and workflows. As part of this transition, our flagship Software Engineering Intelligence (SEI) platform, Velocity, is now replaced by an enhanced SEI platform, custom-designed for each leader and their organization. With enterprise-level scalability, Code Climate provides senior engineering leaders complete autonomy over their SEI platform, seamlessly integrating into their workflows while delivering the customization, flexibility, and reliability needed to tackle business challenges.
Moreover, we understand that quantitative metrics from a data platform alone cannot transform an organization, which is why Code Climate is now a Software Engineering Intelligence Solutions Partner—offering five key characteristics that define our approach
"During my time at Pivotal Software, Inc., I met with hundreds of engineering executives who consistently asked, “How do I improve my software engineering organization?” These conversations revealed a universal challenge: aligning engineering efforts with business goals. I joined Code Climate because I'm passionate about helping enterprise organizations address these critical questions with actionable insights and data-driven strategies that empower engineering executives to drive meaningful change." - Josh Knowles, CEO of Code Climate
Ready to make data-driven engineering decisions to maximize business impact? Request a consultation.

Today, we’re excited to share that Code Climate Quality has been spun out into a new company: Qlty Software. Code Climate is now focused entirely on its next phase of Velocity, our Software Engineering Intelligence (SEI) solution for enterprise organizations

I founded Code Climate in 2011 to help engineering teams level up with data. Our initial Quality product was a pioneer for automated code review, helping developers merge with confidence by bringing maintainability and code coverage metrics into the developer workflow.
Our second product, Velocity, was launched in 2018 as the first Software Engineering Intelligence (SEI) platform to deliver insights about the people and processes in the end-to-end software development lifecycle.
All the while, we’ve been changing the way modern software gets built. Quality is reviewing code written by tens of thousands of engineers, and Velocity is helping Fortune 500 companies drive engineering transformation as they adopt AI-enabled workflows.
Today, Quality and Velocity serve different types of software engineering organizations, and we are investing heavily in each product for their respective customers.
To serve both groups better, we’re branching out into two companies. We’re thrilled to introduce Qlty Software, and to focus Code Climate on software engineering intelligence.
Over the past year, we’ve made more significant upgrades to Quality and our SEI platform, Velocity, than ever before. Much of that is limited early access, and we’ll have a lot to share publicly soon. As separate companies, each can double down on their products.
Qlty Software is dedicated to taking the toil out of code maintenance. The new company name represents our commitment to code quality. We’ve launched a new domain, with a brand new, enhanced edition of the Quality product.
I’m excited to be personally moving into the CEO role of Qlty Software to lead this effort. Josh Knowles, Code Climate’s General Manager, will take on the role of CEO of Code Climate, guiding the next chapter as an SEI solutions partner for technology leaders at large, complex organizations.
We believe the future of developer tools to review and improve code automatically is brighter than ever – from command line tools accelerating feedback loops to new, AI-powered workflows – and we’re excited to be on that journey with you.
-Bryan
CEO, Qlty Software

Technology is evolving very quickly but I don't believe it's evolving as quickly as expectations for it. This has become increasingly apparent to me as I've engaged in conversations with Code Climate's customers, who are senior software engineering leaders across different organizations. While the technology itself is advancing rapidly, the expectations placed on it are evolving at an even faster pace, possibly twice as quickly.
There's Generative AI, such as Copilot, the No-code/Low-code space, and the concept of Software Engineering Intelligence (SEI) platforms, as coined by Gartner®. The promises associated with these tools seem straightforward:
However, the reality isn’t as straightforward as the messaging may seem:
When I joined Code Climate a year ago, one recurring question from our customers was, "We see our data, but what's the actionable next step?" While the potential of these technologies is compelling, it's critical to address and understand their practical implications. Often, business or non-technical stakeholders embrace the promises while engineering leaders, responsible for implementation, grapple with the complex realities.
Software engineering leaders now face increased pressure to achieve more with fewer resources, often under metrics that oversimplify their complex responsibilities. It's no secret that widespread layoffs have affected the technology industry in recent years. Despite this, the scope of their responsibilities and the outcomes expected from them by the business haven't diminished. In fact, with the adoption of new technologies, these expectations have only increased.
Viewing software development solely in terms of the number of features produced overlooks critical aspects such as technical debt or the routine maintenance necessary to keep operations running smoothly. Adding to that, engineering leaders are increasingly pressured to solve non-engineering challenges within their domains. This disconnect between technical solutions and non-technical issues highlights a fundamental gap that can't be bridged by engineering alone—it requires buy-in and understanding from all stakeholders involved.
This tension isn't new, but it's becoming front-and-center thanks to the promises of new technologies mentioned above. These promises create higher expectations for business leaders, which, in turn, trickle down to engineering leaders who are expected to navigate these challenges, which trickle down to the teams doing the work. Recently, I had a conversation with a Code Climate customer undergoing a significant adoption of GitHub Copilot, a powerful tool. This particular leader’s finance team told her, "We bought this new tool six months ago and you don't seem to be operating any better. What's going on?" This scenario reflects the challenges many large engineering organizations face.
Here's how Code Climate is helping software engineering leaders take actionable steps to address challenges with new technology:
In addition, we partner with our enterprise customers to experiment and assess the impact of new technologies. For instance, let's use the following experiment template to justify the adoption of Copilot:
We believe offering Copilot to _______ for [duration] will provide sufficient insights to inform our purchasing decision for a broader, organization-wide rollout.
We will know what our decision is if we see ______ increase/decrease.
Let’s fill in the blanks:
We believe offering Copilot to one portfolio of 5 teams for one quarter will provide sufficient insights to inform our purchasing decision for a broader, organization-wide rollout.
We will know what our decision is if we see:
Andrew Gassen leads Code Climate's enterprise customer organization, partnering with engineering leaders for organization-wide diagnostics to identify critical focus areas and provide customized solutions. Request a consultation to learn more.