Dallinger/Dallinger

View on GitHub
dallinger/frontend/static/scripts/dallinger2.test.js

Summary

Maintainability
A
1 hr
Test Coverage

Expected indentation of 6 spaces but found 8.
Open

        callback("testing");

enforce consistent indentation (indent)

There are several common guidelines which require specific indentation of nested blocks and statements, like:

function hello(indentSize, type) {
    if (indentSize === 4 && type !== 'tab') {
        console.log('Each next indentation will increase on 4 spaces');
    }
}

These are the most common scenarios recommended in different style guides:

  • Two spaces, not longer and no tabs: Google, npm, Node.js, Idiomatic, Felix
  • Tabs: jQuery
  • Four spaces: Crockford

Rule Details

This rule enforces a consistent indentation style. The default style is 4 spaces.

Options

This rule has a mixed option:

For example, for 2-space indentation:

{
    "indent": ["error", 2]
}

Or for tabbed indentation:

{
    "indent": ["error", "tab"]
}

Examples of incorrect code for this rule with the default options:

/*eslint indent: "error"*/

if (a) {
  b=c;
  function foo(d) {
    e=f;
  }
}

Examples of correct code for this rule with the default options:

/*eslint indent: "error"*/

if (a) {
    b=c;
    function foo(d) {
        e=f;
    }
}

This rule has an object option:

  • "SwitchCase" (default: 0) enforces indentation level for case clauses in switch statements
  • "VariableDeclarator" (default: 1) enforces indentation level for var declarators; can also take an object to define separate rules for var, let and const declarations.
  • "outerIIFEBody" (default: 1) enforces indentation level for file-level IIFEs.
  • "MemberExpression" (off by default) enforces indentation level for multi-line property chains (except in variable declarations and assignments)
  • "FunctionDeclaration" takes an object to define rules for function declarations.
    • parameters (off by default) enforces indentation level for parameters in a function declaration. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the declaration must be aligned with the first parameter.
    • body (default: 1) enforces indentation level for the body of a function declaration.
  • "FunctionExpression" takes an object to define rules for function expressions.
    • parameters (off by default) enforces indentation level for parameters in a function expression. This can either be a number indicating indentation level, or the string "first" indicating that all parameters of the expression must be aligned with the first parameter.
    • body (default: 1) enforces indentation level for the body of a function expression.
  • "CallExpression" takes an object to define rules for function call expressions.
    • arguments (off by default) enforces indentation level for arguments in a call expression. This can either be a number indicating indentation level, or the string "first" indicating that all arguments of the expression must be aligned with the first argument.
  • "ArrayExpression" (default: 1) enforces indentation level for elements in arrays. It can also be set to the string "first", indicating that all the elements in the array should be aligned with the first element.
  • "ObjectExpression" (default: 1) enforces indentation level for properties in objects. It can be set to the string "first", indicating that all properties in the object should be aligned with the first property.

Level of indentation denotes the multiple of the indent specified. Example:

  • Indent of 4 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 8 spaces.
  • Indent of 2 spaces with VariableDeclarator set to 2 will indent the multi-line variable declarations with 4 spaces.
  • Indent of 2 spaces with VariableDeclarator set to {"var": 2, "let": 2, "const": 3} will indent the multi-line variable declarations with 4 spaces for var and let, 6 spaces for const statements.
  • Indent of tab with VariableDeclarator set to 2 will indent the multi-line variable declarations with 2 tabs.
  • Indent of 2 spaces with SwitchCase set to 0 will not indent case clauses with respect to switch statements.
  • Indent of 2 spaces with SwitchCase set to 1 will indent case clauses with 2 spaces with respect to switch statements.
  • Indent of 2 spaces with SwitchCase set to 2 will indent case clauses with 4 spaces with respect to switch statements.
  • Indent of tab with SwitchCase set to 2 will indent case clauses with 2 tabs with respect to switch statements.
  • Indent of 2 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
  • Indent of 2 spaces with MemberExpression set to 1 will indent the multi-line property chains with 2 spaces.
  • Indent of 2 spaces with MemberExpression set to 2 will indent the multi-line property chains with 4 spaces.
  • Indent of 4 spaces with MemberExpression set to 0 will indent the multi-line property chains with 0 spaces.
  • Indent of 4 spaces with MemberExpression set to 1 will indent the multi-line property chains with 4 spaces.
  • Indent of 4 spaces with MemberExpression set to 2 will indent the multi-line property chains with 8 spaces.

tab

Examples of incorrect code for this rule with the "tab" option:

/*eslint indent: ["error", "tab"]*/

if (a) {
     b=c;
function foo(d) {
           e=f;
 }
}

Examples of correct code for this rule with the "tab" option:

/*eslint indent: ["error", "tab"]*/

if (a) {
/*tab*/b=c;
/*tab*/function foo(d) {
/*tab*//*tab*/e=f;
/*tab*/}
}

SwitchCase

Examples of incorrect code for this rule with the 2, { "SwitchCase": 1 } options:

/*eslint indent: ["error", 2, { "SwitchCase": 1 }]*/

switch(a){
case "a":
    break;
case "b":
    break;
}

Examples of correct code for this rule with the 2, { "SwitchCase": 1 } option:

/*eslint indent: ["error", 2, { "SwitchCase": 1 }]*/

switch(a){
  case "a":
    break;
  case "b":
    break;
}

VariableDeclarator

Examples of incorrect code for this rule with the 2, { "VariableDeclarator": 1 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 1 }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
    b = 2,
    c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": 1 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 1 }]*/
/*eslint-env es6*/

var a,
  b,
  c;
let a,
  b,
  c;
const a = 1,
  b = 2,
  c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": 2 } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": 2 }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
    b = 2,
    c = 3;

Examples of correct code for this rule with the 2, { "VariableDeclarator": { "var": 2, "let": 2, "const": 3 } } options:

/*eslint indent: ["error", 2, { "VariableDeclarator": { "var": 2, "let": 2, "const": 3 } }]*/
/*eslint-env es6*/

var a,
    b,
    c;
let a,
    b,
    c;
const a = 1,
      b = 2,
      c = 3;

outerIIFEBody

Examples of incorrect code for this rule with the options 2, { "outerIIFEBody": 0 }:

/*eslint indent: ["error", 2, { "outerIIFEBody": 0 }]*/

(function() {

  function foo(x) {
    return x + 1;
  }

})();


if(y) {
console.log('foo');
}

Examples of correct code for this rule with the options 2, {"outerIIFEBody": 0}:

/*eslint indent: ["error", 2, { "outerIIFEBody": 0 }]*/

(function() {

function foo(x) {
  return x + 1;
}

})();


if(y) {
   console.log('foo');
}

MemberExpression

Examples of incorrect code for this rule with the 2, { "MemberExpression": 1 } options:

/*eslint indent: ["error", 2, { "MemberExpression": 1 }]*/

foo
.bar
.baz()

Examples of correct code for this rule with the 2, { "MemberExpression": 1 } option:

/*eslint indent: ["error", 2, { "MemberExpression": 1 }]*/

foo
  .bar
  .baz();

// Any indentation is permitted in variable declarations and assignments.
var bip = aardvark.badger
                  .coyote;

FunctionDeclaration

Examples of incorrect code for this rule with the 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} }]*/

function foo(bar,
  baz,
  qux) {
    qux();
}

Examples of correct code for this rule with the 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionDeclaration": {"body": 1, "parameters": 2} }]*/

function foo(bar,
    baz,
    qux) {
  qux();
}

Examples of incorrect code for this rule with the 2, { "FunctionDeclaration": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionDeclaration": {"parameters": "first"}}]*/

function foo(bar, baz,
  qux, boop) {
  qux();
}

Examples of correct code for this rule with the 2, { "FunctionDeclaration": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionDeclaration": {"parameters": "first"}}]*/

function foo(bar, baz,
             qux, boop) {
  qux();
}

FunctionExpression

Examples of incorrect code for this rule with the 2, { "FunctionExpression": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionExpression": {"body": 1, "parameters": 2} }]*/

var foo = function(bar,
  baz,
  qux) {
    qux();
}

Examples of correct code for this rule with the 2, { "FunctionExpression": {"body": 1, "parameters": 2} } option:

/*eslint indent: ["error", 2, { "FunctionExpression": {"body": 1, "parameters": 2} }]*/

var foo = function(bar,
    baz,
    qux) {
  qux();
}

Examples of incorrect code for this rule with the 2, { "FunctionExpression": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionExpression": {"parameters": "first"}}]*/

var foo = function(bar, baz,
  qux, boop) {
  qux();
}

Examples of correct code for this rule with the 2, { "FunctionExpression": {"parameters": "first"} } option:

/*eslint indent: ["error", 2, {"FunctionExpression": {"parameters": "first"}}]*/

var foo = function(bar, baz,
                   qux, boop) {
  qux();
}

CallExpression

Examples of incorrect code for this rule with the 2, { "CallExpression": {"arguments": 1} } option:

/*eslint indent: ["error", 2, { "CallExpression": {"arguments": 1} }]*/

foo(bar,
    baz,
      qux
);

Examples of correct code for this rule with the 2, { "CallExpression": {"arguments": 1} } option:

/*eslint indent: ["error", 2, { "CallExpression": {"arguments": 1} }]*/

foo(bar,
  baz,
  qux
);

Examples of incorrect code for this rule with the 2, { "CallExpression": {"arguments": "first"} } option:

/*eslint indent: ["error", 2, {"CallExpression": {"arguments": "first"}}]*/

foo(bar, baz,
  baz, boop, beep);

Examples of correct code for this rule with the 2, { "CallExpression": {"arguments": "first"} } option:

/*eslint indent: ["error", 2, {"CallExpression": {"arguments": "first"}}]*/

foo(bar, baz,
    baz, boop, beep);

ArrayExpression

Examples of incorrect code for this rule with the 2, { "ArrayExpression": 1 } option:

/*eslint indent: ["error", 2, { "ArrayExpression": 1 }]*/

var foo = [
    bar,
baz,
      qux
];

Examples of correct code for this rule with the 2, { "ArrayExpression": 1 } option:

/*eslint indent: ["error", 2, { "ArrayExpression": 1 }]*/

var foo = [
  bar,
  baz,
  qux
];

Examples of incorrect code for this rule with the 2, { "ArrayExpression": "first" } option:

/*eslint indent: ["error", 2, {"ArrayExpression": "first"}]*/

var foo = [bar,
  baz,
  qux
];

Examples of correct code for this rule with the 2, { "ArrayExpression": "first" } option:

/*eslint indent: ["error", 2, {"ArrayExpression": "first"}]*/

var foo = [bar,
           baz,
           qux
];

ObjectExpression

Examples of incorrect code for this rule with the 2, { "ObjectExpression": 1 } option:

/*eslint indent: ["error", 2, { "ObjectExpression": 1 }]*/

var foo = {
    bar: 1,
baz: 2,
      qux: 3
};

Examples of correct code for this rule with the 2, { "ObjectExpression": 1 } option:

/*eslint indent: ["error", 2, { "ObjectExpression": 1 }]*/

var foo = {
  bar: 1,
  baz: 2,
  qux: 3
};

Examples of incorrect code for this rule with the 2, { "ObjectExpression": "first" } option:

/*eslint indent: ["error", 2, {"ObjectExpression": "first"}]*/

var foo = { bar: 1,
  baz: 2 };

Examples of correct code for this rule with the 2, { "ObjectExpression": "first" } option:

/*eslint indent: ["error", 2, {"ObjectExpression": "first"}]*/

var foo = { bar: 1,
            baz: 2 };

Compatibility

Unexpected require().
Open

    dlgr = require('./dallinger2').dallinger;

Enforce require() on the top-level module scope (global-require)

In Node.js, module dependencies are included using the require() function, such as:

var fs = require("fs");

While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

function foo() {

    if (condition) {
        var fs = require("fs");
    }
}

Since require() does a synchronous load, it can cause performance problems when used in other locations.

Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

Rule Details

This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

Examples of incorrect code for this rule:

/*eslint global-require: "error"*/
/*eslint-env es6*/

// calling require() inside of a function is not allowed
function readFile(filename, callback) {
    var fs = require('fs');
    fs.readFile(filename, callback)
}

// conditional requires like this are also not allowed
if (DEBUG) { require('debug'); }

// a require() in a switch statement is also flagged
switch(x) { case '1': require('1'); break; }

// you may not require() inside an arrow function body
var getModule = (name) => require(name);

// you may not require() inside of a function body as well
function getModule(name) { return require(name); }

// you may not require() inside of a try/catch block
try {
    require(unsafeModule);
} catch(e) {
    console.log(e);
}

Examples of correct code for this rule:

/*eslint global-require: "error"*/

// all these variations of require() are ok
require('x');
var y = require('y');
var z;
z = require('z').initialize();

// requiring a module and using it in a function is ok
var fs = require('fs');
function readFile(filename, callback) {
    fs.readFile(filename, callback)
}

// you can use a ternary to determine which module to require
var logger = DEBUG ? require('dev-logger') : require('logger');

// if you want you can require() at the end of your module
function doSomethingA() {}
function doSomethingB() {}
var x = require("x"),
    z = require("z");

When Not To Use It

If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

Unexpected require().
Open

    dlgr = require('./dallinger2').dallinger;

Enforce require() on the top-level module scope (global-require)

In Node.js, module dependencies are included using the require() function, such as:

var fs = require("fs");

While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

function foo() {

    if (condition) {
        var fs = require("fs");
    }
}

Since require() does a synchronous load, it can cause performance problems when used in other locations.

Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

Rule Details

This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

Examples of incorrect code for this rule:

/*eslint global-require: "error"*/
/*eslint-env es6*/

// calling require() inside of a function is not allowed
function readFile(filename, callback) {
    var fs = require('fs');
    fs.readFile(filename, callback)
}

// conditional requires like this are also not allowed
if (DEBUG) { require('debug'); }

// a require() in a switch statement is also flagged
switch(x) { case '1': require('1'); break; }

// you may not require() inside an arrow function body
var getModule = (name) => require(name);

// you may not require() inside of a function body as well
function getModule(name) { return require(name); }

// you may not require() inside of a try/catch block
try {
    require(unsafeModule);
} catch(e) {
    console.log(e);
}

Examples of correct code for this rule:

/*eslint global-require: "error"*/

// all these variations of require() are ok
require('x');
var y = require('y');
var z;
z = require('z').initialize();

// requiring a module and using it in a function is ok
var fs = require('fs');
function readFile(filename, callback) {
    fs.readFile(filename, callback)
}

// you can use a ternary to determine which module to require
var logger = DEBUG ? require('dev-logger') : require('logger');

// if you want you can require() at the end of your module
function doSomethingA() {}
function doSomethingB() {}
var x = require("x"),
    z = require("z");

When Not To Use It

If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

Unexpected require().
Open

    dlgr = require('./dallinger2').dallinger;

Enforce require() on the top-level module scope (global-require)

In Node.js, module dependencies are included using the require() function, such as:

var fs = require("fs");

While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

function foo() {

    if (condition) {
        var fs = require("fs");
    }
}

Since require() does a synchronous load, it can cause performance problems when used in other locations.

Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

Rule Details

This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

Examples of incorrect code for this rule:

/*eslint global-require: "error"*/
/*eslint-env es6*/

// calling require() inside of a function is not allowed
function readFile(filename, callback) {
    var fs = require('fs');
    fs.readFile(filename, callback)
}

// conditional requires like this are also not allowed
if (DEBUG) { require('debug'); }

// a require() in a switch statement is also flagged
switch(x) { case '1': require('1'); break; }

// you may not require() inside an arrow function body
var getModule = (name) => require(name);

// you may not require() inside of a function body as well
function getModule(name) { return require(name); }

// you may not require() inside of a try/catch block
try {
    require(unsafeModule);
} catch(e) {
    console.log(e);
}

Examples of correct code for this rule:

/*eslint global-require: "error"*/

// all these variations of require() are ok
require('x');
var y = require('y');
var z;
z = require('z').initialize();

// requiring a module and using it in a function is ok
var fs = require('fs');
function readFile(filename, callback) {
    fs.readFile(filename, callback)
}

// you can use a ternary to determine which module to require
var logger = DEBUG ? require('dev-logger') : require('logger');

// if you want you can require() at the end of your module
function doSomethingA() {}
function doSomethingB() {}
var x = require("x"),
    z = require("z");

When Not To Use It

If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

Unexpected require().
Open

    dlgr = require('./dallinger2').dallinger;

Enforce require() on the top-level module scope (global-require)

In Node.js, module dependencies are included using the require() function, such as:

var fs = require("fs");

While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

function foo() {

    if (condition) {
        var fs = require("fs");
    }
}

Since require() does a synchronous load, it can cause performance problems when used in other locations.

Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

Rule Details

This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

Examples of incorrect code for this rule:

/*eslint global-require: "error"*/
/*eslint-env es6*/

// calling require() inside of a function is not allowed
function readFile(filename, callback) {
    var fs = require('fs');
    fs.readFile(filename, callback)
}

// conditional requires like this are also not allowed
if (DEBUG) { require('debug'); }

// a require() in a switch statement is also flagged
switch(x) { case '1': require('1'); break; }

// you may not require() inside an arrow function body
var getModule = (name) => require(name);

// you may not require() inside of a function body as well
function getModule(name) { return require(name); }

// you may not require() inside of a try/catch block
try {
    require(unsafeModule);
} catch(e) {
    console.log(e);
}

Examples of correct code for this rule:

/*eslint global-require: "error"*/

// all these variations of require() are ok
require('x');
var y = require('y');
var z;
z = require('z').initialize();

// requiring a module and using it in a function is ok
var fs = require('fs');
function readFile(filename, callback) {
    fs.readFile(filename, callback)
}

// you can use a ternary to determine which module to require
var logger = DEBUG ? require('dev-logger') : require('logger');

// if you want you can require() at the end of your module
function doSomethingA() {}
function doSomethingB() {}
var x = require("x"),
    z = require("z");

When Not To Use It

If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

Unreachable code.
Open

      done();

disallow unreachable code after return, throw, continue, and break statements (no-unreachable)

Because the return, throw, break, and continue statements unconditionally exit a block of code, any statements after them cannot be executed. Unreachable statements are usually a mistake.

function fn() {
    x = 1;
    return x;
    x = 3; // this will never execute
}

Rule Details

This rule disallows unreachable code after return, throw, continue, and break statements.

Examples of incorrect code for this rule:

/*eslint no-unreachable: "error"*/

function foo() {
    return true;
    console.log("done");
}

function bar() {
    throw new Error("Oops!");
    console.log("done");
}

while(value) {
    break;
    console.log("done");
}

throw new Error("Oops!");
console.log("done");

function baz() {
    if (Math.random() < 0.5) {
        return;
    } else {
        throw new Error();
    }
    console.log("done");
}

for (;;) {}
console.log("done");

Examples of correct code for this rule, because of JavaScript function and variable hoisting:

/*eslint no-unreachable: "error"*/

function foo() {
    return bar();
    function bar() {
        return 1;
    }
}

function bar() {
    return x;
    var x;
}

switch (foo) {
    case 1:
        break;
        var x;
}

Source: http://eslint.org/docs/rules/

Similar blocks of code found in 2 locations. Consider refactoring.
Open

  beforeEach(function () {
    window.history.pushState({}, 'Test Title',
      'test.html?recruiter=hotair&hitId=HHH&assignmentId=AAA&workerId=WWW&mode=debug'
    );

Severity: Minor
Found in dallinger/frontend/static/scripts/dallinger2.test.js and 1 other location - About 30 mins to fix
dallinger/frontend/static/scripts/dallinger2.test.js on lines 33..36

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 45.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

  beforeEach(function () {
    window.history.pushState({}, 'Test Title', '/test.html?key1=val1&key2=val2');
    dlgr = require('./dallinger2').dallinger;
  });
Severity: Minor
Found in dallinger/frontend/static/scripts/dallinger2.test.js and 1 other location - About 30 mins to fix
dallinger/frontend/static/scripts/dallinger2.test.js on lines 102..108

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 45.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

There are no issues that match your filters.

Category
Status