HansHammel/watchmen

View on GitHub
lib/storage/providers/redis.js

Summary

Maintainability
B
4 hrs
Test Coverage

Function getLatencySince has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring.
Open

StorageRedis.prototype.getLatencySince = function (service, timestamp, aggregatedBy, callback) {
  this.redis.zrevrangebyscore(service.id + ':' + LATENCY_KEY_SUFIX, '+inf', timestamp || '-inf', 'withscores', function (err, data) {
    if (err) {
      return callback(err);
    }
Severity: Minor
Found in lib/storage/providers/redis.js - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function parseLatencyDataFromZset has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring.
Open

function parseLatencyDataFromZset(zset) {
  var list = [];
  var currentObj;
  var accLatency = 0;
  for (var i = 0; i < zset.length; i++) {
Severity: Minor
Found in lib/storage/providers/redis.js - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Expected return with your callback function.
Open

      callback();
Severity: Minor
Found in lib/storage/providers/redis.js by eslint

Enforce Return After Callback (callback-return)

The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

function doSomething(err, callback) {
    if (err) {
        return callback(err);
    }
    callback();
}

To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

Rule Details

This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

Options

The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

Default callback names

Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        callback(err);
    }
    callback();
}

Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        return callback(err);
    }
    callback();
}

Supplied callback names

Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/

function foo(err, done) {
    if (err) {
        done(err);
    }
    done();
}

function bar(err, send) {
    if (err) {
        send.error(err);
    }
    send.success();
}

Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/

function foo(err, done) {
    if (err) {
        return done(err);
    }
    done();
}

function bar(err, send) {
    if (err) {
        return send.error(err);
    }
    send.success();
}

Known Limitations

Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

  • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
  • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

Passing the callback by reference

The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

Example of a false negative when this rule reports correct code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        setTimeout(callback, 0); // this is bad, but WILL NOT warn
    }
    callback();
}

Triggering the callback within a nested function

The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

Example of a false negative when this rule reports correct code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        process.nextTick(function() {
            return callback(); // this is bad, but WILL NOT warn
        });
    }
    callback();
}

If/else statements

The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

Example of a false positive when this rule reports incorrect code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        callback(err); // this is fine, but WILL warn
    } else {
        callback();    // this is fine, but WILL warn
    }
}

When Not To Use It

There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

Further Reading

Related Rules

Expected return with your callback function.
Open

      callback(null, parsedData);
Severity: Minor
Found in lib/storage/providers/redis.js by eslint

Enforce Return After Callback (callback-return)

The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

function doSomething(err, callback) {
    if (err) {
        return callback(err);
    }
    callback();
}

To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

Rule Details

This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

Options

The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

Default callback names

Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        callback(err);
    }
    callback();
}

Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        return callback(err);
    }
    callback();
}

Supplied callback names

Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/

function foo(err, done) {
    if (err) {
        done(err);
    }
    done();
}

function bar(err, send) {
    if (err) {
        send.error(err);
    }
    send.success();
}

Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/

function foo(err, done) {
    if (err) {
        return done(err);
    }
    done();
}

function bar(err, send) {
    if (err) {
        return send.error(err);
    }
    send.success();
}

Known Limitations

Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

  • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
  • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

Passing the callback by reference

The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

Example of a false negative when this rule reports correct code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        setTimeout(callback, 0); // this is bad, but WILL NOT warn
    }
    callback();
}

Triggering the callback within a nested function

The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

Example of a false negative when this rule reports correct code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        process.nextTick(function() {
            return callback(); // this is bad, but WILL NOT warn
        });
    }
    callback();
}

If/else statements

The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

Example of a false positive when this rule reports incorrect code:

/*eslint callback-return: "error"*/

function foo(err, callback) {
    if (err) {
        callback(err); // this is fine, but WILL warn
    } else {
        callback();    // this is fine, but WILL warn
    }
}

When Not To Use It

There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

Further Reading

Related Rules

TODO found
Open

    arr: list, // TODO: change to list
Severity: Minor
Found in lib/storage/providers/redis.js by fixme

Similar blocks of code found in 2 locations. Consider refactoring.
Open

StorageRedis.prototype.resetOutageFailureCount = function (service, cb) {
  this.redis.del(service.id + ':' + FAILURE_COUNT_SUFIX, cb);
};
Severity: Minor
Found in lib/storage/providers/redis.js and 1 other location - About 40 mins to fix
lib/storage/providers/redis.js on lines 259..261

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 49.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

StorageRedis.prototype.increaseOutageFailureCount = function (service, cb) {
  this.redis.incr(service.id + ':' + FAILURE_COUNT_SUFIX, cb);
};
Severity: Minor
Found in lib/storage/providers/redis.js and 1 other location - About 40 mins to fix
lib/storage/providers/redis.js on lines 255..257

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 49.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

There are no issues that match your filters.

Category
Status