Function insertRecords
has a Cognitive Complexity of 88 (exceeds 5 allowed). Consider refactoring. Open
var insertRecords=function(records, operation, callback) {
Sync(function () {
var err;
try {
sctid.bulkInsert.sync(null, records);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
File SCTIdBulkDataManager.js
has 738 lines of code (exceeds 250 allowed). Consider refactoring. Open
/**
* Created by ar on 7/16/15.
*/
var dbInit=require("../config/dbInit");
var stateMachine=require("../model/StateMachine");
Function has too many statements (56). Maximum allowed is 30. Open
Sync(function () {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function registerSctidsSmallRequest
has a Cognitive Complexity of 31 (exceeds 5 allowed). Consider refactoring. Open
var registerSctidsSmallRequest=function (operation, callback) {
Sync(function () {
try {
var cont = 0;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function generateSctids
has 99 lines of code (exceeds 25 allowed). Consider refactoring. Open
var generateSctids=function (operation, callback) {
getModel(function (err) {
if (err) {
console.log("error model:" + err);
callback(err);
Function insertRecords
has 92 lines of code (exceeds 25 allowed). Consider refactoring. Open
var insertRecords=function(records, operation, callback) {
Sync(function () {
var err;
try {
sctid.bulkInsert.sync(null, records);
Function registerSctids
has 81 lines of code (exceeds 25 allowed). Consider refactoring. Open
var registerSctids=function (operation, callback) {
getModel(function (err) {
if (err) {
console.log("error model:" + err);
callback(err);
Function has too many statements (43). Maximum allowed is 30. Open
Sync(function () {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function has too many statements (41). Maximum allowed is 30. Open
Sync(function () {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function has a complexity of 17. Open
Sync(function () {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function has a complexity of 14. Open
Sync(function () {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function registerSctidsSmallRequest
has 60 lines of code (exceeds 25 allowed). Consider refactoring. Open
var registerSctidsSmallRequest=function (operation, callback) {
Sync(function () {
try {
var cont = 0;
Function has a complexity of 12. Open
Sync(function () {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function has too many statements (35). Maximum allowed is 30. Open
Sync(function () {
- Read upRead up
- Exclude checks
enforce a maximum number of statements allowed in function blocks (max-statements)
The max-statements
rule allows you to specify the maximum number of statements allowed in a function.
function foo() {
var bar = 1; // one statement
var baz = 2; // two statements
var qux = 3; // three statements
}
Rule Details
This rule enforces a maximum number of statements allowed in function blocks.
Options
This rule has a number or object option:
-
"max"
(default10
) enforces a maximum number of statements allows in function blocks
Deprecated: The object property maximum
is deprecated; please use the object property max
instead.
This rule has an object option:
-
"ignoreTopLevelFunctions": true
ignores top-level functions
max
Examples of incorrect code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11; // Too many.
};
Examples of correct code for this rule with the default { "max": 10 }
option:
/*eslint max-statements: ["error", 10]*/
/*eslint-env es6*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
let foo = () => {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
return function () {
// The number of statements in the inner function does not count toward the
// statement maximum.
return 42;
};
}
ignoreTopLevelFunctions
Examples of additional correct code for this rule with the { "max": 10 }, { "ignoreTopLevelFunctions": true }
options:
/*eslint max-statements: ["error", 10, { "ignoreTopLevelFunctions": true }]*/
function foo() {
var foo1 = 1;
var foo2 = 2;
var foo3 = 3;
var foo4 = 4;
var foo5 = 5;
var foo6 = 6;
var foo7 = 7;
var foo8 = 8;
var foo9 = 9;
var foo10 = 10;
var foo11 = 11;
}
Related Rules
- [complexity](complexity.md)
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md) Source: http://eslint.org/docs/rules/
Function generateSctidsSmallRequest
has 55 lines of code (exceeds 25 allowed). Consider refactoring. Open
var generateSctidsSmallRequest=function (operation, callback) {
console.log ("Unexpected call to generateSctidsSmallRequest");
getModel(function (err) {
if (err) {
console.log("error model:" + err);
Function has a complexity of 10. Open
Sync(function () {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function updateSctids
has 51 lines of code (exceeds 25 allowed). Consider refactoring. Open
var updateSctids=function (operation, callback){
var cont=0;
var records=[];
var error=false;
for (var i=0;i<operation.sctids.length;i++) {
Function has a complexity of 7. Open
Sync(function () {
- Read upRead up
- Exclude checks
Limit Cyclomatic Complexity (complexity)
Cyclomatic complexity measures the number of linearly independent paths through a program's source code. This rule allows setting a cyclomatic complexity threshold.
function a(x) {
if (true) {
return x; // 1st path
} else if (false) {
return x+1; // 2nd path
} else {
return 4; // 3rd path
}
}
Rule Details
This rule is aimed at reducing code complexity by capping the amount of cyclomatic complexity allowed in a program. As such, it will warn when the cyclomatic complexity crosses the configured threshold (default is 20
).
Examples of incorrect code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else if (false) {
return x+1;
} else {
return 4; // 3rd path
}
}
Examples of correct code for a maximum of 2:
/*eslint complexity: ["error", 2]*/
function a(x) {
if (true) {
return x;
} else {
return 4;
}
}
Options
Optionally, you may specify a max
object property:
"complexity": ["error", 2]
is equivalent to
"complexity": ["error", { "max": 2 }]
Deprecated: the object property maximum
is deprecated. Please use the property max
instead.
When Not To Use It
If you can't determine an appropriate complexity limit for your code, then it's best to disable this rule.
Further Reading
Related Rules
- [max-depth](max-depth.md)
- [max-len](max-len.md)
- [max-nested-callbacks](max-nested-callbacks.md)
- [max-params](max-params.md)
- [max-statements](max-statements.md) Source: http://eslint.org/docs/rules/
Function getSctids
has 39 lines of code (exceeds 25 allowed). Consider refactoring. Open
var getSctids=function (sctidArray, callback) {
sctidArray.forEach(function (sctId) {
if (!sctIdHelper.validSCTId(sctId)) {
Function setAvailableSCTIDRecord2NewStatus
has 35 lines of code (exceeds 25 allowed). Consider refactoring. Open
function setAvailableSCTIDRecord2NewStatus(operation, callback){
Sync(function () {
try {
var query = {
namespace: parseInt(operation.namespace),
Function setNewSCTIdRecord
has 31 lines of code (exceeds 25 allowed). Consider refactoring. Open
function setNewSCTIdRecord(operation,thisPartition,callback) {
Sync(function () {
try {
//The transaction around the partition sequence number increment
//(and subsequent save to database) is covered
Avoid deeply nested control flow statements. Open
if (diff) {
sctIdToRegister = diff;
}
Avoid deeply nested control flow statements. Open
for (i = 0; i < records.length; i++) {
if (records[i][0] == code) {
break;
}
}
Avoid deeply nested control flow statements. Open
if (!data) {
callback("Partition not found for key:" + JSON.stringify(key));
return;
}
Avoid deeply nested control flow statements. Open
if (seq == null) {
callback("Partition not found for key:" + JSON.stringify(key));
return;
}
Avoid deeply nested control flow statements. Open
if (i > -1 && i < records.length) {
console.log("pos i:" + i);
var key = [parseInt(operation.namespace), operation.partitionId.toString()];
var seq = null;
Avoid deeply nested control flow statements. Open
if (ret){
throw ret;
}
Avoid deeply nested control flow statements. Open
if (diff) {
sysIdToCreate = diff;
}
Avoid deeply nested control flow statements. Open
if (sctIdRecord != null) {
sctIdRecord.jobId = operation.jobId;
sctid.save.sync(null,sctIdRecord);
canContinue = false;
}
Avoid deeply nested control flow statements. Open
if (res) {
var syscode = res[0];
var i = -1;
for (i = 0; i < records.length; i++) {
if (records[i][5] == syscode) {
Avoid deeply nested control flow statements. Open
if (err) {
error = true;
callback(err);
return;
}
Avoid deeply nested control flow statements. Open
if (err) {
callback(err);
} else {
callback(null);
}
Avoid deeply nested control flow statements. Open
if (cont == records.length) {
callback(null);
return;
}
Function getSctid
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
var getSctid=function (sctId, systemId, callback) {
Sync(function () {
if (!sctIdHelper.validSCTId(sctId)) {
callback("Not valid SCTID:" + sctId, null);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (ret){
throw ret;
}
Avoid deeply nested control flow statements. Open
for (var j = 0; j < records.length; j++) {
sctid.save(records[j], function (err) {
if (err) {
error = true;
Avoid deeply nested control flow statements. Open
if (existingSysIds && existingSysIds.length > 0) {
sctid.updateJobId.sync(null, existingSysIds, operation.jobId);
if (existingSysIds.length < sysIdInChunk.size()) {
Avoid deeply nested control flow statements. Open
if (existingSctIds.length < sctIdInChunk.size()) {
var setExistSctId = new sets.StringSet(existingSctIds);
diff = sctIdInChunk.difference(setExistSctId).array();
insertedCount += setExistSctId.size();
Function getSyncSctidBySystemId
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
var getSyncSctidBySystemId=function (namespaceId,systemId, callback) {
Sync(function () {
var objQuery = {namespace: namespaceId, systemId: systemId};
try {
var sctIdRecord = sctid.findBySystemId.sync(null, objQuery);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Expected '===' and instead saw '=='. Open
if (cont == diff.length) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
namespace: parseInt(operation.namespace),
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Expected '!==' and instead saw '!='. Open
if (operation.systemId && operation.systemId.trim() != "") {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e,null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (cont == operation.records.length) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Don't make functions within a loop. Open
sctIdToRegister.forEach(function (newSctId) {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (sctIdRecord.sctid == sctId && sctIdRecord.systemId != systemId) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (cont == operation.sctids.length) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null,false);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (sctIdRecord.sctid == sctId && sctIdRecord.systemId != systemId) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (cont == records.length) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (cont == records.length) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (tmpNsp=="0"){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e,null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (operation.systemId && operation.systemId.trim() != "") {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, newRecord);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (!sctIdRecord || sctIdRecord.length==0) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e.message);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback("Partition sequence not found for key:" + JSON.stringify(key), null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e,null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, newRecord);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (i % chunk == 0 || i == (operation.records.length )) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, sctIdRecord);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null,true);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Don't make functions within a loop. Open
sctid.save(records[j], function (err) {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err, null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Don't make functions within a loop. Open
getSctid(sctId, null, function (err, sctIdRecord) {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
Unnecessary semicolon. Open
};
- Read upRead up
- Exclude checks
disallow unnecessary semicolons (no-extra-semi)
Typing mistakes and misunderstandings about where semicolons are required can lead to semicolons that are unnecessary. While not technically an error, extra semicolons can cause confusion when reading code.
Rule Details
This rule disallows unnecessary semicolons.
Examples of incorrect code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;;
function foo() {
// code
};
Examples of correct code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;
var foo = function() {
// code
};
When Not To Use It
If you intentionally use extra semicolons then you can disable this rule.
Related Rules
- [semi](semi.md)
- [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null,false);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(error);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Unnecessary semicolon. Open
};
- Read upRead up
- Exclude checks
disallow unnecessary semicolons (no-extra-semi)
Typing mistakes and misunderstandings about where semicolons are required can lead to semicolons that are unnecessary. While not technically an error, extra semicolons can cause confusion when reading code.
Rule Details
This rule disallows unnecessary semicolons.
Examples of incorrect code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;;
function foo() {
// code
};
Examples of correct code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;
var foo = function() {
// code
};
When Not To Use It
If you intentionally use extra semicolons then you can disable this rule.
Related Rules
- [semi](semi.md)
- [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, sctIdRecords);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (i % chunk == 0 || i == (operation.records.length )) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
record[2] = parseInt(operation.namespace);
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Expected '===' and instead saw '=='. Open
if (sctIdRecord.status==stateMachine.statuses.assigned){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Unnecessary semicolon. Open
};
- Read upRead up
- Exclude checks
disallow unnecessary semicolons (no-extra-semi)
Typing mistakes and misunderstandings about where semicolons are required can lead to semicolons that are unnecessary. While not technically an error, extra semicolons can cause confusion when reading code.
Rule Details
This rule disallows unnecessary semicolons.
Examples of incorrect code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;;
function foo() {
// code
};
Examples of correct code for this rule:
/*eslint no-extra-semi: "error"*/
var x = 5;
var foo = function() {
// code
};
When Not To Use It
If you intentionally use extra semicolons then you can disable this rule.
Related Rules
- [semi](semi.md)
- [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, sctIdRecord[0]);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Don't make functions within a loop. Open
sctid.save(records[j], function (err) {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, record);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, newSctidRecord2);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(error,null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null, partitions);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (seq == null) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
var key = [parseInt(operation.namespace), operation.partitionId.toString()];
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Don't make functions within a loop. Open
sysIdToCreate.forEach(function (systemId) {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
'i' is already defined. Open
var i = -1;
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
&& !(operation.generateLegacyIds && operation.generateLegacyIds.toUpperCase()=="TRUE" )) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Use ‘===’ to compare with ‘null’. Open
if (sctIdRecord != null) {
- Read upRead up
- Exclude checks
Disallow Null Comparisons (no-eq-null)
Comparing to null
without a type-checking operator (==
or !=
), can have unintended results as the comparison will evaluate to true when comparing to not just a null
, but also an undefined
value.
if (foo == null) {
bar();
}
Rule Details
The no-eq-null
rule aims reduce potential bug and unwanted behavior by ensuring that comparisons to null
only match null
, and not also undefined
. As such it will flag comparisons to null when using ==
and !=
.
Examples of incorrect code for this rule:
/*eslint no-eq-null: "error"*/
if (foo == null) {
bar();
}
while (qux != null) {
baz();
}
Examples of correct code for this rule:
/*eslint no-eq-null: "error"*/
if (foo === null) {
bar();
}
while (qux !== null) {
baz();
}
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (records[i][5] == syscode) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (seq == null) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
'regEx' is already defined. Open
var regEx = new RegExp("[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}");
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (operation.quantity == cont) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
var key = [parseInt(operation.namespace), operation.partitionId.toString()];
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Don't make functions within a loop. Open
partitionLockManager.lockedOperation(key, function() {
- Read upRead up
- Exclude checks
Disallow Functions in Loops (no-loop-func)
Writing functions within loops tends to result in errors due to the way the function creates a closure around the loop. For example:
for (var i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, you would expect each function created within the loop to return a different number. In reality, each function returns 10, because that was the last value of i
in the scope.
let
or const
mitigate this problem.
/*eslint-env es6*/
for (let i = 0; i < 10; i++) {
funcs[i] = function() {
return i;
};
}
In this case, each function created within the loop returns a different number as expected.
Rule Details
This error is raised to highlight a piece of code that may not work as you expect it to and could also indicate a misunderstanding of how the language works. Your code may run without any problems if you do not fix this error, but in some situations it could behave unexpectedly.
Examples of incorrect code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
for (var i=10; i; i--) {
(function() { return i; })();
}
while(i) {
var a = function() { return i; };
a();
}
do {
function a() { return i; };
a();
} while (i);
let foo = 0;
for (let i=10; i; i--) {
// Bad, function is referencing block scoped variable in the outer scope.
var a = function() { return foo; };
a();
}
Examples of correct code for this rule:
/*eslint no-loop-func: "error"*/
/*eslint-env es6*/
var a = function() {};
for (var i=10; i; i--) {
a();
}
for (var i=10; i; i--) {
var a = function() {}; // OK, no references to variables in the outer scopes.
a();
}
for (let i=10; i; i--) {
var a = function() { return i; }; // OK, all references are referring to block scoped variables in the loop.
a();
}
var foo = 100;
for (let i=10; i; i--) {
var a = function() { return foo; }; // OK, all references are referring to never modified variables.
a();
}
//... no modifications of foo after this loop ...
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(null);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback("Partition not found for key:" + JSON.stringify(key));
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
var key = [parseInt(operation.namespace), operation.partitionId.toString()];
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Use ‘===’ to compare with ‘null’. Open
if (seq == null) {
- Read upRead up
- Exclude checks
Disallow Null Comparisons (no-eq-null)
Comparing to null
without a type-checking operator (==
or !=
), can have unintended results as the comparison will evaluate to true when comparing to not just a null
, but also an undefined
value.
if (foo == null) {
bar();
}
Rule Details
The no-eq-null
rule aims reduce potential bug and unwanted behavior by ensuring that comparisons to null
only match null
, and not also undefined
. As such it will flag comparisons to null when using ==
and !=
.
Examples of incorrect code for this rule:
/*eslint no-eq-null: "error"*/
if (foo == null) {
bar();
}
while (qux != null) {
baz();
}
Examples of correct code for this rule:
/*eslint no-eq-null: "error"*/
if (foo === null) {
bar();
}
while (qux !== null) {
baz();
}
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(e);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Missing radix parameter. Open
record[2] = parseInt(operation.namespace);
- Read upRead up
- Exclude checks
Require Radix Parameter (radix)
When using the parseInt()
function it is common to omit the second argument, the radix, and let the function try to determine from the first argument what type of number it is. By default, parseInt()
will autodetect decimal and hexadecimal (via 0x
prefix). Prior to ECMAScript 5, parseInt()
also autodetected octal literals, which caused problems because many developers assumed a leading 0
would be ignored.
This confusion led to the suggestion that you always use the radix parameter to parseInt()
to eliminate unintended consequences. So instead of doing this:
var num = parseInt("071"); // 57
Do this:
var num = parseInt("071", 10); // 71
ECMAScript 5 changed the behavior of parseInt()
so that it no longer autodetects octal literals and instead treats them as decimal literals. However, the differences between hexadecimal and decimal interpretation of the first parameter causes many developers to continue using the radix parameter to ensure the string is interpreted in the intended way.
On the other hand, if the code is targeting only ES5-compliant environments passing the radix 10
may be redundant. In such a case you might want to disallow using such a radix.
Rule Details
This rule is aimed at preventing the unintended conversion of a string to a number of a different base than intended or at preventing the redundant 10
radix if targeting modern environments only.
Options
There are two options for this rule:
-
"always"
enforces providing a radix (default) -
"as-needed"
disallows providing the10
radix
always
Examples of incorrect code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071");
var num = parseInt(someValue);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the default "always"
option:
/*eslint radix: "error"*/
var num = parseInt("071", 10);
var num = parseInt("071", 8);
var num = parseFloat(someValue);
as-needed
Examples of incorrect code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071", 10);
var num = parseInt("071", "abc");
var num = parseInt();
Examples of correct code for the "as-needed"
option:
/*eslint radix: ["error", "as-needed"]*/
var num = parseInt("071");
var num = parseInt("071", 8);
var num = parseFloat(someValue);
When Not To Use It
If you don't want to enforce either presence or omission of the 10
radix value you can turn this rule off.
Further Reading
Expected '===' and instead saw '=='. Open
if (i % chunk == 0 || i == (operation.quantity )) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (i % chunk == 0 || i == (operation.quantity )) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (records[i][0] == code) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Use ‘===’ to compare with ‘null’. Open
if (seq == null) {
- Read upRead up
- Exclude checks
Disallow Null Comparisons (no-eq-null)
Comparing to null
without a type-checking operator (==
or !=
), can have unintended results as the comparison will evaluate to true when comparing to not just a null
, but also an undefined
value.
if (foo == null) {
bar();
}
Rule Details
The no-eq-null
rule aims reduce potential bug and unwanted behavior by ensuring that comparisons to null
only match null
, and not also undefined
. As such it will flag comparisons to null when using ==
and !=
.
Examples of incorrect code for this rule:
/*eslint no-eq-null: "error"*/
if (foo == null) {
bar();
}
while (qux != null) {
baz();
}
Examples of correct code for this rule:
/*eslint no-eq-null: "error"*/
if (foo === null) {
bar();
}
while (qux !== null) {
baz();
}
Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(err);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
'res' is already defined. Open
var res = err.match(regEx);
- Read upRead up
- Exclude checks
disallow variable redeclaration (no-redeclare)
In JavaScript, it's possible to redeclare the same variable name using var
. This can lead to confusion as to where the variable is actually declared and initialized.
Rule Details
This rule is aimed at eliminating variables that have multiple declarations in the same scope.
Examples of incorrect code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
var a = 10;
Examples of correct code for this rule:
/*eslint no-redeclare: "error"*/
var a = 3;
// ...
a = 10;
Options
This rule takes one optional argument, an object with a boolean property "builtinGlobals"
. It defaults to false
.
If set to true
, this rule also checks redeclaration of built-in globals, such as Object
, Array
, Number
...
builtinGlobals
Examples of incorrect code for the { "builtinGlobals": true }
option:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
var Object = 0;
Examples of incorrect code for the { "builtinGlobals": true }
option and the browser
environment:
/*eslint no-redeclare: ["error", { "builtinGlobals": true }]*/
/*eslint-env browser*/
var top = 0;
The browser
environment has many built-in global variables (for example, top
). Some of built-in global variables cannot be redeclared.
Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (sctIdRecord != null) {
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Move the invocation into the parens that contain the function. Open
var guid = (function() {
- Read upRead up
- Exclude checks
Require IIFEs to be Wrapped (wrap-iife)
You can immediately invoke function expressions, but not function declarations. A common technique to create an immediately-invoked function expression (IIFE) is to wrap a function declaration in parentheses. The opening parentheses causes the contained function to be parsed as an expression, rather than a declaration.
// function expression could be unwrapped
var x = function () { return { y: 1 };}();
// function declaration must be wrapped
function () { /* side effects */ }(); // SyntaxError
Rule Details
This rule requires all immediately-invoked function expressions to be wrapped in parentheses.
Options
This rule has two options, a string option and an object option.
String option:
-
"outside"
enforces always wrapping the call expression. The default is"outside"
. -
"inside"
enforces always wrapping the function expression. -
"any"
enforces always wrapping, but allows either style.
Object option:
-
"functionPrototypeMethods": true
additionally enforces wrapping function expressions invoked using.call
and.apply
. The default isfalse
.
outside
Examples of incorrect code for the default "outside"
option:
/*eslint wrap-iife: ["error", "outside"]*/
var x = function () { return { y: 1 };}(); // unwrapped
var x = (function () { return { y: 1 };})(); // wrapped function expression
Examples of correct code for the default "outside"
option:
/*eslint wrap-iife: ["error", "outside"]*/
var x = (function () { return { y: 1 };}()); // wrapped call expression
inside
Examples of incorrect code for the "inside"
option:
/*eslint wrap-iife: ["error", "inside"]*/
var x = function () { return { y: 1 };}(); // unwrapped
var x = (function () { return { y: 1 };}()); // wrapped call expression
Examples of correct code for the "inside"
option:
/*eslint wrap-iife: ["error", "inside"]*/
var x = (function () { return { y: 1 };})(); // wrapped function expression
any
Examples of incorrect code for the "any"
option:
/*eslint wrap-iife: ["error", "any"]*/
var x = function () { return { y: 1 };}(); // unwrapped
Examples of correct code for the "any"
option:
/*eslint wrap-iife: ["error", "any"]*/
var x = (function () { return { y: 1 };}()); // wrapped call expression
var x = (function () { return { y: 1 };})(); // wrapped function expression
functionPrototypeMethods
Examples of incorrect code for this rule with the "inside", { "functionPrototypeMethods": true }
options:
/* eslint wrap-iife: [2, "inside", { functionPrototypeMethods: true }] */
var x = function(){ foo(); }()
var x = (function(){ foo(); }())
var x = function(){ foo(); }.call(bar)
var x = (function(){ foo(); }.call(bar))
Examples of correct code for this rule with the "inside", { "functionPrototypeMethods": true }
options:
/* eslint wrap-iife: [2, "inside", { functionPrototypeMethods: true }] */
var x = (function(){ foo(); })()
var x = (function(){ foo(); }).call(bar)
Source: http://eslint.org/docs/rules/