Function isAbleUser
has 40 lines of code (exceeds 25 allowed). Consider refactoring. Open
function isAbleUser(schemeName, user, callback){
var able = false;
security.admins.forEach(function(admin){
if (admin == user)
able = true;
Function generateSchemeIds
has 29 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.generateSchemeIds = function generateSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var generationMetadata = req.swagger.params.generationMetadata.value;
security.authenticate(token, function(err, data) {
Function registerSchemeIds
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.registerSchemeIds = function registerSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var registrationMetadata = req.swagger.params.registrationMetadata.value;
security.authenticate(token, function(err, data) {
Function publishSchemeIds
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.publishSchemeIds = function publishSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var publicationMetadata = req.swagger.params.publicationMetadata.value;
security.authenticate(token, function(err, data) {
Function reserveSchemeIds
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.reserveSchemeIds = function reserveSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var reservationMetadata = req.swagger.params.reservationMetadata.value;
security.authenticate(token, function(err, data) {
Function releaseSchemeIds
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.releaseSchemeIds = function releaseSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var releaseMetadata = req.swagger.params.releaseMetadata.value;
security.authenticate(token, function(err, data) {
Function deprecateSchemeIds
has 26 lines of code (exceeds 25 allowed). Consider refactoring. Open
module.exports.deprecateSchemeIds = function deprecateSchemeIds (req, res, next) {
var token = req.swagger.params.token.value;
var schemeName = req.swagger.params.schemeName.value;
var deprecationMetadata = req.swagger.params.deprecationMetadata.value;
security.authenticate(token, function(err, data) {
Avoid deeply nested control flow statements. Open
if (err) {
console.log("Error accessing groups", err);
callback(able);
} else {
result.forEach(function(loopGroup){
Expected '===' and instead saw '=='. Open
if (permission.role == "group"){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (possibleGroups.indexOf(loopGroup) != -1)
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(able);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (!registrationMetadata.records || registrationMetadata.records.length==0){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(able);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (admin == user)
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (generationMetadata.systemIds && generationMetadata.systemIds.length!=0 && generationMetadata.systemIds.length!=generationMetadata.quantity){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(able);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
}else if (permission.username == user)
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(able);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '===' and instead saw '=='. Open
if (!generationMetadata.systemIds || generationMetadata.systemIds.length==0){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected return with your callback function. Open
callback(able);
- Read upRead up
- Exclude checks
Enforce Return After Callback (callback-return)
The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.
function doSomething(err, callback) {
if (err) {
return callback(err);
}
callback();
}
To prevent calling the callback multiple times it is important to return
anytime the callback is triggered outside
of the main function body. Neglecting this technique often leads to issues where you do something more than once.
For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw
a Can't render headers after they are sent to the client.
error.
Rule Details
This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately
preceding a return
statement. This rule decides what is a callback based on the name of the function being called.
Options
The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback
, cb
, next
.
Default callback names
Examples of incorrect code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err);
}
callback();
}
Examples of correct code for this rule with the default ["callback", "cb", "next"]
option:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
return callback(err);
}
callback();
}
Supplied callback names
Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
done(err);
}
done();
}
function bar(err, send) {
if (err) {
send.error(err);
}
send.success();
}
Examples of correct code for this rule with the option ["done", "send.error", "send.success"]
:
/*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
function foo(err, done) {
if (err) {
return done(err);
}
done();
}
function bar(err, send) {
if (err) {
return send.error(err);
}
send.success();
}
Known Limitations
Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:
- false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
- false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)
Passing the callback by reference
The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout
).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
setTimeout(callback, 0); // this is bad, but WILL NOT warn
}
callback();
}
Triggering the callback within a nested function
The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).
Example of a false negative when this rule reports correct code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
process.nextTick(function() {
return callback(); // this is bad, but WILL NOT warn
});
}
callback();
}
If/else statements
The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if
statement.
Example of a false positive when this rule reports incorrect code:
/*eslint callback-return: "error"*/
function foo(err, callback) {
if (err) {
callback(err); // this is fine, but WILL warn
} else {
callback(); // this is fine, but WILL warn
}
}
When Not To Use It
There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.
Further Reading
Related Rules
- [handle-callback-err](handle-callback-err.md) Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (generationMetadata.systemIds && generationMetadata.systemIds.length!=0 && generationMetadata.systemIds.length!=generationMetadata.quantity){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/
Expected '!==' and instead saw '!='. Open
if (schemeName != "false"){
- Read upRead up
- Exclude checks
Require === and !== (eqeqeq)
It is considered good practice to use the type-safe equality operators ===
and !==
instead of their regular counterparts ==
and !=
.
The reason for this is that ==
and !=
do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm.
For instance, the following statements are all considered true
:
[] == false
[] == ![]
3 == "03"
If one of those occurs in an innocent-looking statement such as a == b
the actual problem is very difficult to spot.
Rule Details
This rule is aimed at eliminating the type-unsafe equality operators.
Examples of incorrect code for this rule:
/*eslint eqeqeq: "error"*/
if (x == 42) { }
if ("" == text) { }
if (obj.getStuff() != undefined) { }
The --fix
option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof
expression, or if both operands are literals with the same type.
Options
always
The "always"
option (default) enforces the use of ===
and !==
in every situation (except when you opt-in to more specific handling of null
[see below]).
Examples of incorrect code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
Examples of correct code for the "always"
option:
/*eslint eqeqeq: ["error", "always"]*/
a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null
This rule optionally takes a second argument, which should be an object with the following supported properties:
-
"null"
: Customize how this rule treatsnull
literals. Possible values:-
always
(default) - Always use === or !==. -
never
- Never use === or !== withnull
. -
ignore
- Do not apply this rule tonull
.
-
smart
The "smart"
option enforces the use of ===
and !==
except for these cases:
- Comparing two literal values
- Evaluating the value of
typeof
- Comparing against
null
Examples of incorrect code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
// comparing two variables requires ===
a == b
// only one side is a literal
foo == true
bananas != 1
// comparing to undefined requires ===
value == undefined
Examples of correct code for the "smart"
option:
/*eslint eqeqeq: ["error", "smart"]*/
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null
allow-null
Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null
literal.
["error", "always", {"null": "ignore"}]
When Not To Use It
If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/