JonSn0w/Hyde

View on GitHub
js/settings.js

Summary

Maintainability
D
2 days
Test Coverage

File settings.js has 377 lines of code (exceeds 250 allowed). Consider refactoring.
Open

const config = require('./js/config');
var menu = $('#appMenu'),
        toolbar = $('#toolbar'),
        leftFade = $('#leftFade'),
        dragArea = $('#draggable'),
Severity: Minor
Found in js/settings.js - About 5 hrs to fix

    Function formatHead has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring.
    Open

    var formatHead = () => {
        var textPanel = $('#textPanel'),
                menuToggle = $('#menuToggle');
        if(process.platfrom === 'darwin') {
            preview.css('paddingTop', '25px');
    Severity: Minor
    Found in js/settings.js - About 1 hr to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Function formatHead has 36 lines of code (exceeds 25 allowed). Consider refactoring.
    Open

    var formatHead = () => {
        var textPanel = $('#textPanel'),
                menuToggle = $('#menuToggle');
        if(process.platfrom === 'darwin') {
            preview.css('paddingTop', '25px');
    Severity: Minor
    Found in js/settings.js - About 1 hr to fix

      Function applySettings has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring.
      Open

      function applySettings(opt) {
          var selector = $('#'+opt.name),
                  input = selector.find('input'),
                  type = input.attr('type');
          if(settings.get(opt.name) && opt.action)
      Severity: Minor
      Found in js/settings.js - About 1 hr to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Function toggleCustomCSS has 26 lines of code (exceeds 25 allowed). Consider refactoring.
      Open

      function toggleCustomCSS() {
          var state = settings.get('customCSS'),
                  file = path.join('assets','css','preview','custom.css'),
                  tag = $('#customCSSTag');
          if(!state)
      Severity: Minor
      Found in js/settings.js - About 1 hr to fix

        'getUserSettings' is defined but never used.
        Open

        function getUserSettings() {
        Severity: Minor
        Found in js/settings.js by eslint

        Disallow Unused Variables (no-unused-vars)

        Variables that are declared and not used anywhere in the code are most likely an error due to incomplete refactoring. Such variables take up space in the code and can lead to confusion by readers.

        Rule Details

        This rule is aimed at eliminating unused variables, functions, and parameters of functions.

        A variable is considered to be used if any of the following are true:

        • It represents a function that is called (doSomething())
        • It is read (var y = x)
        • It is passed into a function as an argument (doSomething(x))
        • It is read inside of a function that is passed to another function (doSomething(function() { foo(); }))

        A variable is not considered to be used if it is only ever assigned to (var x = 5) or declared.

        Examples of incorrect code for this rule:

        /*eslint no-unused-vars: "error"*/
        /*global some_unused_var*/
        
        // It checks variables you have defined as global
        some_unused_var = 42;
        
        var x;
        
        // Write-only variables are not considered as used.
        var y = 10;
        y = 5;
        
        // A read for a modification of itself is not considered as used.
        var z = 0;
        z = z + 1;
        
        // By default, unused arguments cause warnings.
        (function(foo) {
            return 5;
        })();
        
        // Unused recursive functions also cause warnings.
        function fact(n) {
            if (n < 2) return 1;
            return n * fact(n - 1);
        }
        
        // When a function definition destructures an array, unused entries from the array also cause warnings.
        function getY([x, y]) {
            return y;
        }

        Examples of correct code for this rule:

        /*eslint no-unused-vars: "error"*/
        
        var x = 10;
        alert(x);
        
        // foo is considered used here
        myFunc(function foo() {
            // ...
        }.bind(this));
        
        (function(foo) {
            return foo;
        })();
        
        var myFunc;
        myFunc = setTimeout(function() {
            // myFunc is considered used
            myFunc();
        }, 50);
        
        // Only the second argument from the descructured array is used.
        function getY([, y]) {
            return y;
        }

        exported

        In environments outside of CommonJS or ECMAScript modules, you may use var to create a global variable that may be used by other scripts. You can use the /* exported variableName */ comment block to indicate that this variable is being exported and therefore should not be considered unused.

        Note that /* exported */ has no effect for any of the following:

        • when the environment is node or commonjs
        • when parserOptions.sourceType is module
        • when ecmaFeatures.globalReturn is true

        The line comment // exported variableName will not work as exported is not line-specific.

        Examples of correct code for /* exported variableName */ operation:

        /* exported global_var */
        
        var global_var = 42;

        Options

        This rule takes one argument which can be a string or an object. The string settings are the same as those of the vars property (explained below).

        By default this rule is enabled with all option for variables and after-used for arguments.

        {
            "rules": {
                "no-unused-vars": ["error", { "vars": "all", "args": "after-used", "ignoreRestSiblings": false }]
            }
        }

        vars

        The vars option has two settings:

        • all checks all variables for usage, including those in the global scope. This is the default setting.
        • local checks only that locally-declared variables are used but will allow global variables to be unused.

        vars: local

        Examples of correct code for the { "vars": "local" } option:

        /*eslint no-unused-vars: ["error", { "vars": "local" }]*/
        /*global some_unused_var */
        
        some_unused_var = 42;

        varsIgnorePattern

        The varsIgnorePattern option specifies exceptions not to check for usage: variables whose names match a regexp pattern. For example, variables whose names contain ignored or Ignored.

        Examples of correct code for the { "varsIgnorePattern": "[iI]gnored" } option:

        /*eslint no-unused-vars: ["error", { "varsIgnorePattern": "[iI]gnored" }]*/
        
        var firstVarIgnored = 1;
        var secondVar = 2;
        console.log(secondVar);

        args

        The args option has three settings:

        • after-used - only the last argument must be used. This allows you, for instance, to have two named parameters to a function and as long as you use the second argument, ESLint will not warn you about the first. This is the default setting.
        • all - all named arguments must be used.
        • none - do not check arguments.

        args: after-used

        Examples of incorrect code for the default { "args": "after-used" } option:

        /*eslint no-unused-vars: ["error", { "args": "after-used" }]*/
        
        // 1 error
        // "baz" is defined but never used
        (function(foo, bar, baz) {
            return bar;
        })();

        Examples of correct code for the default { "args": "after-used" } option:

        /*eslint no-unused-vars: ["error", {"args": "after-used"}]*/
        
        (function(foo, bar, baz) {
            return baz;
        })();

        args: all

        Examples of incorrect code for the { "args": "all" } option:

        /*eslint no-unused-vars: ["error", { "args": "all" }]*/
        
        // 2 errors
        // "foo" is defined but never used
        // "baz" is defined but never used
        (function(foo, bar, baz) {
            return bar;
        })();

        args: none

        Examples of correct code for the { "args": "none" } option:

        /*eslint no-unused-vars: ["error", { "args": "none" }]*/
        
        (function(foo, bar, baz) {
            return bar;
        })();

        ignoreRestSiblings

        The ignoreRestSiblings option is a boolean (default: false). Using a Rest Property it is possible to "omit" properties from an object, but by default the sibling properties are marked as "unused". With this option enabled the rest property's siblings are ignored.

        Examples of correct code for the { "ignoreRestSiblings": true } option:

        /*eslint no-unused-vars: ["error", { "ignoreRestSiblings": true }]*/
        // 'type' is ignored because it has a rest property sibling.
        var { type, ...coords } = data;

        argsIgnorePattern

        The argsIgnorePattern option specifies exceptions not to check for usage: arguments whose names match a regexp pattern. For example, variables whose names begin with an underscore.

        Examples of correct code for the { "argsIgnorePattern": "^_" } option:

        /*eslint no-unused-vars: ["error", { "argsIgnorePattern": "^_" }]*/
        
        function foo(x, _y) {
            return x + 1;
        }
        foo();

        caughtErrors

        The caughtErrors option is used for catch block arguments validation.

        It has two settings:

        • none - do not check error objects. This is the default setting.
        • all - all named arguments must be used.

        caughtErrors: none

        Not specifying this rule is equivalent of assigning it to none.

        Examples of correct code for the { "caughtErrors": "none" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrors": "none" }]*/
        
        try {
            //...
        } catch (err) {
            console.error("errors");
        }

        caughtErrors: all

        Examples of incorrect code for the { "caughtErrors": "all" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrors": "all" }]*/
        
        // 1 error
        // "err" is defined but never used
        try {
            //...
        } catch (err) {
            console.error("errors");
        }

        caughtErrorsIgnorePattern

        The caughtErrorsIgnorePattern option specifies exceptions not to check for usage: catch arguments whose names match a regexp pattern. For example, variables whose names begin with a string 'ignore'.

        Examples of correct code for the { "caughtErrorsIgnorePattern": "^ignore" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrorsIgnorePattern": "^ignore" }]*/
        
        try {
            //...
        } catch (ignoreErr) {
            console.error("errors");
        }

        When Not To Use It

        If you don't want to be notified about unused variables or function arguments, you can safely turn this rule off. Source: http://eslint.org/docs/rules/

        'adaptTheme' is defined but never used.
        Open

        function adaptTheme(color, luminosity) {
        Severity: Minor
        Found in js/settings.js by eslint

        Disallow Unused Variables (no-unused-vars)

        Variables that are declared and not used anywhere in the code are most likely an error due to incomplete refactoring. Such variables take up space in the code and can lead to confusion by readers.

        Rule Details

        This rule is aimed at eliminating unused variables, functions, and parameters of functions.

        A variable is considered to be used if any of the following are true:

        • It represents a function that is called (doSomething())
        • It is read (var y = x)
        • It is passed into a function as an argument (doSomething(x))
        • It is read inside of a function that is passed to another function (doSomething(function() { foo(); }))

        A variable is not considered to be used if it is only ever assigned to (var x = 5) or declared.

        Examples of incorrect code for this rule:

        /*eslint no-unused-vars: "error"*/
        /*global some_unused_var*/
        
        // It checks variables you have defined as global
        some_unused_var = 42;
        
        var x;
        
        // Write-only variables are not considered as used.
        var y = 10;
        y = 5;
        
        // A read for a modification of itself is not considered as used.
        var z = 0;
        z = z + 1;
        
        // By default, unused arguments cause warnings.
        (function(foo) {
            return 5;
        })();
        
        // Unused recursive functions also cause warnings.
        function fact(n) {
            if (n < 2) return 1;
            return n * fact(n - 1);
        }
        
        // When a function definition destructures an array, unused entries from the array also cause warnings.
        function getY([x, y]) {
            return y;
        }

        Examples of correct code for this rule:

        /*eslint no-unused-vars: "error"*/
        
        var x = 10;
        alert(x);
        
        // foo is considered used here
        myFunc(function foo() {
            // ...
        }.bind(this));
        
        (function(foo) {
            return foo;
        })();
        
        var myFunc;
        myFunc = setTimeout(function() {
            // myFunc is considered used
            myFunc();
        }, 50);
        
        // Only the second argument from the descructured array is used.
        function getY([, y]) {
            return y;
        }

        exported

        In environments outside of CommonJS or ECMAScript modules, you may use var to create a global variable that may be used by other scripts. You can use the /* exported variableName */ comment block to indicate that this variable is being exported and therefore should not be considered unused.

        Note that /* exported */ has no effect for any of the following:

        • when the environment is node or commonjs
        • when parserOptions.sourceType is module
        • when ecmaFeatures.globalReturn is true

        The line comment // exported variableName will not work as exported is not line-specific.

        Examples of correct code for /* exported variableName */ operation:

        /* exported global_var */
        
        var global_var = 42;

        Options

        This rule takes one argument which can be a string or an object. The string settings are the same as those of the vars property (explained below).

        By default this rule is enabled with all option for variables and after-used for arguments.

        {
            "rules": {
                "no-unused-vars": ["error", { "vars": "all", "args": "after-used", "ignoreRestSiblings": false }]
            }
        }

        vars

        The vars option has two settings:

        • all checks all variables for usage, including those in the global scope. This is the default setting.
        • local checks only that locally-declared variables are used but will allow global variables to be unused.

        vars: local

        Examples of correct code for the { "vars": "local" } option:

        /*eslint no-unused-vars: ["error", { "vars": "local" }]*/
        /*global some_unused_var */
        
        some_unused_var = 42;

        varsIgnorePattern

        The varsIgnorePattern option specifies exceptions not to check for usage: variables whose names match a regexp pattern. For example, variables whose names contain ignored or Ignored.

        Examples of correct code for the { "varsIgnorePattern": "[iI]gnored" } option:

        /*eslint no-unused-vars: ["error", { "varsIgnorePattern": "[iI]gnored" }]*/
        
        var firstVarIgnored = 1;
        var secondVar = 2;
        console.log(secondVar);

        args

        The args option has three settings:

        • after-used - only the last argument must be used. This allows you, for instance, to have two named parameters to a function and as long as you use the second argument, ESLint will not warn you about the first. This is the default setting.
        • all - all named arguments must be used.
        • none - do not check arguments.

        args: after-used

        Examples of incorrect code for the default { "args": "after-used" } option:

        /*eslint no-unused-vars: ["error", { "args": "after-used" }]*/
        
        // 1 error
        // "baz" is defined but never used
        (function(foo, bar, baz) {
            return bar;
        })();

        Examples of correct code for the default { "args": "after-used" } option:

        /*eslint no-unused-vars: ["error", {"args": "after-used"}]*/
        
        (function(foo, bar, baz) {
            return baz;
        })();

        args: all

        Examples of incorrect code for the { "args": "all" } option:

        /*eslint no-unused-vars: ["error", { "args": "all" }]*/
        
        // 2 errors
        // "foo" is defined but never used
        // "baz" is defined but never used
        (function(foo, bar, baz) {
            return bar;
        })();

        args: none

        Examples of correct code for the { "args": "none" } option:

        /*eslint no-unused-vars: ["error", { "args": "none" }]*/
        
        (function(foo, bar, baz) {
            return bar;
        })();

        ignoreRestSiblings

        The ignoreRestSiblings option is a boolean (default: false). Using a Rest Property it is possible to "omit" properties from an object, but by default the sibling properties are marked as "unused". With this option enabled the rest property's siblings are ignored.

        Examples of correct code for the { "ignoreRestSiblings": true } option:

        /*eslint no-unused-vars: ["error", { "ignoreRestSiblings": true }]*/
        // 'type' is ignored because it has a rest property sibling.
        var { type, ...coords } = data;

        argsIgnorePattern

        The argsIgnorePattern option specifies exceptions not to check for usage: arguments whose names match a regexp pattern. For example, variables whose names begin with an underscore.

        Examples of correct code for the { "argsIgnorePattern": "^_" } option:

        /*eslint no-unused-vars: ["error", { "argsIgnorePattern": "^_" }]*/
        
        function foo(x, _y) {
            return x + 1;
        }
        foo();

        caughtErrors

        The caughtErrors option is used for catch block arguments validation.

        It has two settings:

        • none - do not check error objects. This is the default setting.
        • all - all named arguments must be used.

        caughtErrors: none

        Not specifying this rule is equivalent of assigning it to none.

        Examples of correct code for the { "caughtErrors": "none" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrors": "none" }]*/
        
        try {
            //...
        } catch (err) {
            console.error("errors");
        }

        caughtErrors: all

        Examples of incorrect code for the { "caughtErrors": "all" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrors": "all" }]*/
        
        // 1 error
        // "err" is defined but never used
        try {
            //...
        } catch (err) {
            console.error("errors");
        }

        caughtErrorsIgnorePattern

        The caughtErrorsIgnorePattern option specifies exceptions not to check for usage: catch arguments whose names match a regexp pattern. For example, variables whose names begin with a string 'ignore'.

        Examples of correct code for the { "caughtErrorsIgnorePattern": "^ignore" } option:

        /*eslint no-unused-vars: ["error", { "caughtErrorsIgnorePattern": "^ignore" }]*/
        
        try {
            //...
        } catch (ignoreErr) {
            console.error("errors");
        }

        When Not To Use It

        If you don't want to be notified about unused variables or function arguments, you can safely turn this rule off. Source: http://eslint.org/docs/rules/

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

            } else {
                menuButton.css('color', 'rgba(255, 255, 255, 0.07)');
                menuButton.mouseover(function() {
                    $(this).css('color', 'rgba(255, 255, 255, 0.35)');
                }).mouseout(function() {
        Severity: Major
        Found in js/settings.js and 1 other location - About 2 hrs to fix
        js/settings.js on lines 117..126

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 108.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

            if(luminosity >= 0.6) {
                menuButton.css('color', 'rgba(50, 50, 50, 0.1)');
                menuButton.mouseover(function() {
                    $(this).css('color', 'rgba(50, 50, 50, 0.3)');
                }).mouseout(function() {
        Severity: Major
        Found in js/settings.js and 1 other location - About 2 hrs to fix
        js/settings.js on lines 126..135

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 108.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

        $('#previewFontSize-input, #previewFontSize-up, #previewFontSize-down').bind('keyup mouseup', function() {
            var value = parseFloat($('#previewFontSize-input').val());
            $('#mdPreview').css('fontSize', value.toString()+'px');
            settings.set('previewFontSize', value);
        });
        Severity: Minor
        Found in js/settings.js and 1 other location - About 50 mins to fix
        js/settings.js on lines 363..367

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 81.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

        $('#editorFontSize-input, #editorFontSize-up, #editorFontSize-down').bind('keyup mouseup', function() {
            var value = parseFloat($('#editorFontSize-input').val());
            $('#textPanel > div').css('fontSize', value.toString()+'px');
            settings.set('editorFontSize', value);
        });
        Severity: Minor
        Found in js/settings.js and 1 other location - About 50 mins to fix
        js/settings.js on lines 385..389

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 81.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        There are no issues that match your filters.

        Category
        Status