Showing 5,781 of 10,536 total issues
Avoid deeply nested control flow statements. Open
for j in range(len(line.series)):
line.series[j].marker.symbol = "circle"
line.series[j].smooth = True
line.x_axis.crosses = 'min'
Avoid deeply nested control flow statements. Open
for j in range(0, base_period_data_ca_len):
current_col_number += 1
col = format_cell.get_column_letter(current_col_number)
ws[col + str(current_row_number)].font = title_font
Avoid deeply nested control flow statements. Open
for j in range(len(line.series)):
line.series[j].marker.symbol = "circle"
line.series[j].smooth = True
line.x_axis.crosses = 'min'
Avoid deeply nested control flow statements. Open
if has_sub_maximums_data_flag:
# line
line = LineChart()
line.title = _('Base Period Maximum Load') + ' / ' \
+ _('Reporting Period Maximum Load') + ' - ' \
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if rows_points is not None and len(rows_points) > 0:
cursor.close()
cnx.close()
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.ERROR',
description=
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if rows_points is not None and len(rows_points) > 0:
cursor.close()
cnx.close()
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.ERROR',
description=
Function on_post
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_post(req, resp, id_):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
"""Handles GET requests"""
admin_control(req)
if not id_.isdigit() or int(id_) <= 0:
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
"""Handles GET requests"""
admin_control(req)
if not id_.isdigit() or int(id_) <= 0:
raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_get
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_get(req, resp, id_):
if 'API-KEY' not in req.headers or \
not isinstance(req.headers['API-KEY'], str) or \
len(str.strip(req.headers['API-KEY'])) == 0:
access_control(req)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function on_post
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_post(req, resp, id_):
"""Handles POST requests"""
admin_control(req)
try:
raw_json = req.stream.read().decode('utf-8')
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if numerator_meter is None:
numerator_meter = offline_meter_dict.get(row[5], None)
# find denominator meter by uuid
denominator_meter = meter_dict.get(row[6], None)
Avoid deeply nested control flow statements. Open
if numerator_meter is None:
numerator_meter = offline_meter_dict.get(row[5], None)
# find denominator meter by uuid
denominator_meter = meter_dict.get(row[6], None)
Avoid deeply nested control flow statements. Open
if denominator_meter is None:
denominator_meter = offline_meter_dict.get(row[6], None)
Function on_post
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def on_post(req, resp, id_):
"""Handles POST requests"""
admin_control(req)
try:
raw_json = req.stream.read().decode('utf-8')
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"