PlanHubMe/PlanHub

View on GitHub
app.js

Summary

Maintainability
F
3 days
Test Coverage

File app.js has 262 lines of code (exceeds 250 allowed). Consider refactoring.
Open

/*
    MyHomeworkSpace
    https://myhomework.space/
    https://github.com/MyHomeworkSpace/MyHomeworkSpace
    Licensed under the MIT License.
Severity: Minor
Found in app.js - About 2 hrs to fix

    Expected return with your callback function.
    Open

            next();
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    String prototype is read only, properties should not be added.
    Open

        String.prototype.encodeHTML = function () {
    Severity: Minor
    Found in app.js by eslint

    Disallow Extending of Native Objects (no-extend-native)

    In JavaScript, you can extend any object, including builtin or "native" objects. Sometimes people change the behavior of these native objects in ways that break the assumptions made about them in other parts of the code.

    For example here we are overriding a builtin method that will then affect all Objects, even other builtins.

    // seems harmless
    Object.prototype.extra = 55;
    
    // loop through some userIds
    var users = {
        "123": "Stan",
        "456": "David"
    };
    
    // not what you'd expect
    for (var id in users) {
        console.log(id); // "123", "456", "extra"
    }

    A common suggestion to avoid this problem would be to wrap the inside of the for loop with users.hasOwnProperty(id). However, if this rule is strictly enforced throughout your codebase you won't need to take that step.

    Rule Details

    Disallows directly modifying the prototype of builtin objects.

    Examples of incorrect code for this rule:

    /*eslint no-extend-native: "error"*/
    
    Object.prototype.a = "a";
    Object.defineProperty(Array.prototype, "times", { value: 999 });

    Options

    This rule accepts an exceptions option, which can be used to specify a list of builtins for which extensions will be allowed.

    exceptions

    Examples of correct code for the sample { "exceptions": ["Object"] } option:

    /*eslint no-extend-native: ["error", { "exceptions": ["Object"] }]*/
    
    Object.prototype.a = "a";

    Known Limitations

    This rule does not report any of the following less obvious approaches to modify the prototype of builtin objects:

    var x = Object;
    x.prototype.thing = a;
    
    eval("Array.prototype.forEach = 'muhahaha'");
    
    with(Array) {
        prototype.thing = 'thing';
    };
    
    window.Function.prototype.bind = 'tight';

    When Not To Use It

    You may want to disable this rule when working with polyfills that try to patch older versions of JavaScript with the latest spec, such as those that might Function.prototype.bind or Array.prototype.forEach in a future-friendly way.

    Related Rules

    Expected return with your callback function.
    Open

            next(err);
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    Expected return with your callback function.
    Open

            next();
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    Expected return with your callback function.
    Open

            next();
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    Expected '===' and instead saw '=='.
    Open

        if (req.host == "staging.myhomework.space") {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '!==' and instead saw '!='.
    Open

        if (res.locals.user.canFeedback != 1) {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

    global.env = ((app.get("env") == "production") ? app.get("env") : env);
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

            if (obj.length == 0) {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

            if (obj.length == 0) {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

        if (err.status == 404) {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected return with your callback function.
    Open

            next();
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    Expected '!==' and instead saw '!='.
    Open

        if (res.locals.user.canAnnouncements != 1) {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

    if (global.basePath[global.basePath.length - 1] == "/") {
    Severity: Minor
    Found in app.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected return with your callback function.
    Open

            next();
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    Expected error to be handled.
    Open

    global.dbErrorHandler = function(err, req, res, next) {
    Severity: Minor
    Found in app.js by eslint

    Enforce Callback Error Handling (handle-callback-err)

    In Node.js, a common pattern for dealing with asynchronous behavior is called the callback pattern. This pattern expects an Error object or null as the first argument of the callback. Forgetting to handle these errors can lead to some really strange behavior in your application.

    function loadData (err, data) {
        doSomething(); // forgot to handle error
    }

    Rule Details

    This rule expects that when you're using the callback pattern in Node.js you'll handle the error.

    Options

    The rule takes a single string option: the name of the error parameter. The default is "err".

    Examples of incorrect code for this rule with the default "err" parameter name:

    /*eslint handle-callback-err: "error"*/
    
    function loadData (err, data) {
        doSomething();
    }

    Examples of correct code for this rule with the default "err" parameter name:

    /*eslint handle-callback-err: "error"*/
    
    function loadData (err, data) {
        if (err) {
            console.log(err.stack);
        }
        doSomething();
    }
    
    function generateError (err) {
        if (err) {}
    }

    Examples of correct code for this rule with a sample "error" parameter name:

    /*eslint handle-callback-err: ["error", "error"]*/
    
    function loadData (error, data) {
        if (error) {
           console.log(error.stack);
        }
        doSomething();
    }

    regular expression

    Sometimes (especially in big projects) the name of the error variable is not consistent across the project, so you need a more flexible configuration to ensure that the rule reports all unhandled errors.

    If the configured name of the error variable begins with a ^ it is considered to be a regexp pattern.

    • If the option is "^(err|error|anySpecificError)$", the rule reports unhandled errors where the parameter name can be err, error or anySpecificError.
    • If the option is "^.+Error$", the rule reports unhandled errors where the parameter name ends with Error (for example, connectionError or validationError will match).
    • If the option is "^.*(e|E)rr", the rule reports unhandled errors where the parameter name matches any string that contains err or Err (for example, err, error, anyError, some_err will match).

    When Not To Use It

    There are cases where it may be safe for your application to ignore errors, however only ignore errors if you are confident that some other form of monitoring will help you catch the problem.

    Further Reading

    Expected return with your callback function.
    Open

            next(err);
    Severity: Minor
    Found in app.js by eslint

    Enforce Return After Callback (callback-return)

    The callback pattern is at the heart of most I/O and event-driven programming in JavaScript.

    function doSomething(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    To prevent calling the callback multiple times it is important to return anytime the callback is triggered outside of the main function body. Neglecting this technique often leads to issues where you do something more than once. For example, in the case of an HTTP request, you may try to send HTTP headers more than once leading Node.js to throw a Can't render headers after they are sent to the client. error.

    Rule Details

    This rule is aimed at ensuring that callbacks used outside of the main function block are always part-of or immediately preceding a return statement. This rule decides what is a callback based on the name of the function being called.

    Options

    The rule takes a single option - an array of possible callback names - which may include object methods. The default callback names are callback, cb, next.

    Default callback names

    Examples of incorrect code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err);
        }
        callback();
    }

    Examples of correct code for this rule with the default ["callback", "cb", "next"] option:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            return callback(err);
        }
        callback();
    }

    Supplied callback names

    Examples of incorrect code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            send.error(err);
        }
        send.success();
    }

    Examples of correct code for this rule with the option ["done", "send.error", "send.success"]:

    /*eslint callback-return: ["error", ["done", "send.error", "send.success"]]*/
    
    function foo(err, done) {
        if (err) {
            return done(err);
        }
        done();
    }
    
    function bar(err, send) {
        if (err) {
            return send.error(err);
        }
        send.success();
    }

    Known Limitations

    Because it is difficult to understand the meaning of a program through static analysis, this rule has limitations:

    • false negatives when this rule reports correct code, but the program calls the callback more than one time (which is incorrect behavior)
    • false positives when this rule reports incorrect code, but the program calls the callback only one time (which is correct behavior)

    Passing the callback by reference

    The static analysis of this rule does not detect that the program calls the callback if it is an argument of a function (for example, setTimeout).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            setTimeout(callback, 0); // this is bad, but WILL NOT warn
        }
        callback();
    }

    Triggering the callback within a nested function

    The static analysis of this rule does not detect that the program calls the callback from within a nested function or an immediately-invoked function expression (IIFE).

    Example of a false negative when this rule reports correct code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            process.nextTick(function() {
                return callback(); // this is bad, but WILL NOT warn
            });
        }
        callback();
    }

    If/else statements

    The static analysis of this rule does not detect that the program calls the callback only one time in each branch of an if statement.

    Example of a false positive when this rule reports incorrect code:

    /*eslint callback-return: "error"*/
    
    function foo(err, callback) {
        if (err) {
            callback(err); // this is fine, but WILL warn
        } else {
            callback();    // this is fine, but WILL warn
        }
    }

    When Not To Use It

    There are some cases where you might want to call a callback function more than once. In those cases this rule may lead to incorrect behavior. In those cases you may want to reserve a special name for those callbacks and not include that in the list of callbacks that trigger warnings.

    Further Reading

    Related Rules

    TODO found
    Open

    // TODO: make this betterified
    Severity: Minor
    Found in app.js by fixme

    TODO found
    Open

        // TODO: errors on api pages?
    Severity: Minor
    Found in app.js by fixme

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

        global.knex("users").select("*").where({ username: req.session.username }).then(function(obj) {
            if (obj.length > 1) {
                res.render("error", { title: "Error", msg: "A database error has occurred, and there is a duplicate user record. Please contact us for assistance." });
                return;
            }
    Severity: Major
    Found in app.js and 1 other location - About 6 hrs to fix
    app.js on lines 68..79

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 157.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

        global.knex("users").select("*").where({ username: req.session.username }).then(function(obj) {
            if (obj.length > 1) {
                res.render("error", { title: "Error", msg: "A database error has occurred, and there is a duplicate user record. Please contact us for assistance." });
                return;
            }
    Severity: Major
    Found in app.js and 1 other location - About 6 hrs to fix
    app.js on lines 146..157

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 157.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 3 locations. Consider refactoring.
    Open

    global.requireViewFeedback = function(req, res, next) {
        if (res.locals.user.canFeedback != 1) {
            if (res.locals.apiCall) {
                res.json({
                    status: "forbidden",
    Severity: Major
    Found in app.js and 2 other locations - About 3 hrs to fix
    app.js on lines 84..97
    app.js on lines 114..127

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 112.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 3 locations. Consider refactoring.
    Open

    global.requireNonZeroLevel = function(req, res, next) {
        if (res.locals.user.level < 0) {
            if (res.locals.apiCall) {
                res.json({
                    status: "forbidden",
    Severity: Major
    Found in app.js and 2 other locations - About 3 hrs to fix
    app.js on lines 99..112
    app.js on lines 114..127

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 112.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 3 locations. Consider refactoring.
    Open

    global.requireEditAnnouncements = function(req, res, next) {
        if (res.locals.user.canAnnouncements != 1) {
            if (res.locals.apiCall) {
                res.json({
                    status: "forbidden",
    Severity: Major
    Found in app.js and 2 other locations - About 3 hrs to fix
    app.js on lines 84..97
    app.js on lines 99..112

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 112.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    There are no issues that match your filters.

    Category
    Status