Showing 647 of 687 total issues
Method only_reraising?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def only_reraising?(resbody_node)
return false if use_exception_variable_in_ensure?(resbody_node)
body = resbody_node.body
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return if node.receiver
return unless (parent = node.parent)
return unless parent.block_type? && parent.method?(:refine)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method build_cipher_arguments
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def build_cipher_arguments(node, algorithm_name, no_arguments)
algorithm_parts = algorithm_name.downcase.split('-')
size_and_mode = sanitize_arguments(node.arguments).map(&:downcase)
if NO_ARG_ALGORITHM.include?(algorithm_parts.first.upcase) && no_arguments
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_nth_ref
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_nth_ref(node)
backref, = *node
return if @valid_ref.nil? || backref <= @valid_ref
message = format(
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
def_node = node.each_ancestor(:def, :defs).first
return unless def_node
enum_conversion_call?(node) do |method_node, arguments|
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
uri_escape_unescape?(node) do |top_level, obsolete_method|
replacements = if %i[escape encode].include?(obsolete_method)
ALTERNATE_METHODS_OF_URI_ESCAPE
else
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless redundant_require_statement?(node)
add_offense(node) do |corrector|
if node.parent.respond_to?(:modifier_form?) && node.parent.modifier_form?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless compare_between_object_id_by_double_equal?(node)
add_offense(node) do |corrector|
receiver = node.receiver.receiver
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method condition_as_parenthesized_one_line_pattern_matching?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def condition_as_parenthesized_one_line_pattern_matching?(condition)
return false unless condition.parenthesized_call?
return false unless (first_child = condition.children.first)
if target_ruby_version >= 3.0
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless require_safe_navigation?(node)
bad_method?(node) do |safe_nav, method|
return if nil_methods.include?(method) || PLUS_MINUS_METHODS.include?(node.method_name)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_send
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_send(node)
return unless uri_constant?(node.receiver)
parser = target_ruby_version >= 3.4 ? 'RFC2396_PARSER' : 'DEFAULT_PARSER'
argument = node.first_argument ? "(#{node.first_argument.source})" : ''
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method correct_hash_key
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def correct_hash_key(node)
# Although some operators can be converted to symbols normally
# (ie. `:==`), these are not accepted as hash keys and will
# raise a syntax error (eg. `{ ==: ... }`). Therefore, if the
# symbol does not start with an alphanumeric or underscore, it
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method correct_inconsistent_hash_keys
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def correct_inconsistent_hash_keys(keys)
keys.each do |key|
ignore_node(key)
next if requires_quotes?(key)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_def
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_def(node)
return unless node.predicate_method?
return if allowed_method?(node.method_name) || matches_allowed_pattern?(node.method_name)
return unless (body = node.body)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sample_size_for_one_arg
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def sample_size_for_one_arg(arg)
if arg.range_type?
range_size(arg)
elsif arg.int_type?
[0, -1].include?(arg.to_a.first) ? nil : :unknown
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method register_offense
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def register_offense(comment, cop_names)
directive = DirectiveComment.new(comment)
cop_names.each do |name|
name = name.split('/').first if department?(directive, name)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method qualified_name
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def qualified_name(enclosing, namespace, mod_name)
if enclosing != 'Object'
if namespace
"#{enclosing}::#{namespace.const_name}::#{mod_name}"
else
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method use_exception_variable_in_ensure?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def use_exception_variable_in_ensure?(resbody_node)
return false unless (exception_variable = resbody_node.exception_variable)
return false unless (ensure_node = resbody_node.each_ancestor(:ensure).first)
return false unless (ensure_body = ensure_node.body)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method collect_conditions
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def collect_conditions(node, target, conditions)
condition =
case node.type
when :begin
return collect_conditions(node.children.first, target, conditions)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method on_def
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def on_def(node)
subject, = *node
return if node.defs_type? && subject.variable?
def_ancestor = node.each_ancestor(:def, :defs).first
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"