egslava/freemind-todo

View on GitHub
src/ui.js

Summary

Maintainability
A
1 hr
Test Coverage

Function checkTasksPrompt has 5 arguments (exceeds 4 allowed). Consider refactoring.
Open

function checkTasksPrompt(message, tasks, tree, rows, callback) {
Severity: Minor
Found in src/ui.js - About 35 mins to fix

    Function removeCommonPrefixes has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
    Open

    function removeCommonPrefixes(lines, symbol){
        const result = lines.slice(); //sort().slice(); #
        for (let i = 0; i < lines.length; i++){
            for (let j = i+1; j < lines.length; j++){
                const prefix = _commonPrefixLength(lines[i], lines[j]);
    Severity: Minor
    Found in src/ui.js - About 25 mins to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Function _commonPrefixLength has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
    Open

    function _commonPrefixLength(str1, str2){
        let i = 0;
        for(i = 0; i < Math.min(str1.length, str2.length); i++){
            if (str1[i] != str2[i]) break;
        }
    Severity: Minor
    Found in src/ui.js - About 25 mins to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Expected '===' and instead saw '=='.
    Open

            if (str1[i] == " ") break;
    Severity: Minor
    Found in src/ui.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '!==' and instead saw '!='.
    Open

            if (str1[i] != str2[i]) break;
    Severity: Minor
    Found in src/ui.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Unnecessary semicolon.
    Open

    };
    Severity: Minor
    Found in src/ui.js by eslint

    disallow unnecessary semicolons (no-extra-semi)

    Typing mistakes and misunderstandings about where semicolons are required can lead to semicolons that are unnecessary. While not technically an error, extra semicolons can cause confusion when reading code.

    Rule Details

    This rule disallows unnecessary semicolons.

    Examples of incorrect code for this rule:

    /*eslint no-extra-semi: "error"*/
    
    var x = 5;;
    
    function foo() {
        // code
    };

    Examples of correct code for this rule:

    /*eslint no-extra-semi: "error"*/
    
    var x = 5;
    
    var foo = function() {
        // code
    };

    When Not To Use It

    If you intentionally use extra semicolons then you can disable this rule.

    Related Rules

    Unexpected require().
    Open

        const path = require('path');
    Severity: Minor
    Found in src/ui.js by eslint

    Enforce require() on the top-level module scope (global-require)

    In Node.js, module dependencies are included using the require() function, such as:

    var fs = require("fs");

    While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

    function foo() {
    
        if (condition) {
            var fs = require("fs");
        }
    }

    Since require() does a synchronous load, it can cause performance problems when used in other locations.

    Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

    Rule Details

    This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

    Examples of incorrect code for this rule:

    /*eslint global-require: "error"*/
    /*eslint-env es6*/
    
    // calling require() inside of a function is not allowed
    function readFile(filename, callback) {
        var fs = require('fs');
        fs.readFile(filename, callback)
    }
    
    // conditional requires like this are also not allowed
    if (DEBUG) { require('debug'); }
    
    // a require() in a switch statement is also flagged
    switch(x) { case '1': require('1'); break; }
    
    // you may not require() inside an arrow function body
    var getModule = (name) => require(name);
    
    // you may not require() inside of a function body as well
    function getModule(name) { return require(name); }
    
    // you may not require() inside of a try/catch block
    try {
        require(unsafeModule);
    } catch(e) {
        console.log(e);
    }

    Examples of correct code for this rule:

    /*eslint global-require: "error"*/
    
    // all these variations of require() are ok
    require('x');
    var y = require('y');
    var z;
    z = require('z').initialize();
    
    // requiring a module and using it in a function is ok
    var fs = require('fs');
    function readFile(filename, callback) {
        fs.readFile(filename, callback)
    }
    
    // you can use a ternary to determine which module to require
    var logger = DEBUG ? require('dev-logger') : require('logger');
    
    // if you want you can require() at the end of your module
    function doSomethingA() {}
    function doSomethingB() {}
    var x = require("x"),
        z = require("z");

    When Not To Use It

    If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

    Unexpected require().
    Open

        return require(path.join(root, 'package.json'));
    Severity: Minor
    Found in src/ui.js by eslint

    Enforce require() on the top-level module scope (global-require)

    In Node.js, module dependencies are included using the require() function, such as:

    var fs = require("fs");

    While require() may be called anywhere in code, some style guides prescribe that it should be called only in the top level of a module to make it easier to identify dependencies. For instance, it's arguably harder to identify dependencies when they are deeply nested inside of functions and other statements:

    function foo() {
    
        if (condition) {
            var fs = require("fs");
        }
    }

    Since require() does a synchronous load, it can cause performance problems when used in other locations.

    Further, ES6 modules mandate that import and export statements can only occur in the top level of the module's body.

    Rule Details

    This rule requires all calls to require() to be at the top level of the module, similar to ES6 import and export statements, which also can occur only at the top level.

    Examples of incorrect code for this rule:

    /*eslint global-require: "error"*/
    /*eslint-env es6*/
    
    // calling require() inside of a function is not allowed
    function readFile(filename, callback) {
        var fs = require('fs');
        fs.readFile(filename, callback)
    }
    
    // conditional requires like this are also not allowed
    if (DEBUG) { require('debug'); }
    
    // a require() in a switch statement is also flagged
    switch(x) { case '1': require('1'); break; }
    
    // you may not require() inside an arrow function body
    var getModule = (name) => require(name);
    
    // you may not require() inside of a function body as well
    function getModule(name) { return require(name); }
    
    // you may not require() inside of a try/catch block
    try {
        require(unsafeModule);
    } catch(e) {
        console.log(e);
    }

    Examples of correct code for this rule:

    /*eslint global-require: "error"*/
    
    // all these variations of require() are ok
    require('x');
    var y = require('y');
    var z;
    z = require('z').initialize();
    
    // requiring a module and using it in a function is ok
    var fs = require('fs');
    function readFile(filename, callback) {
        fs.readFile(filename, callback)
    }
    
    // you can use a ternary to determine which module to require
    var logger = DEBUG ? require('dev-logger') : require('logger');
    
    // if you want you can require() at the end of your module
    function doSomethingA() {}
    function doSomethingB() {}
    var x = require("x"),
        z = require("z");

    When Not To Use It

    If you have a module that must be initialized with information that comes from the file-system or if a module is only used in very rare situations and will cause significant overhead to load it may make sense to disable the rule. If you need to require() an optional dependency inside of a try/catch, you can disable this rule for just that dependency using the // eslint-disable-line global-require comment. Source: http://eslint.org/docs/rules/

    There are no issues that match your filters.

    Category
    Status