Showing 67 of 136 total issues
Function getKeyRecoveryParam
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
EC.prototype.getKeyRecoveryParam = function(e, signature, Q, enc) {
signature = new Signature(signature, enc);
if (signature.recoveryParam !== null)
return signature.recoveryParam;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eqXToP
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
JPoint.prototype.eqXToP = function eqXToP(x) {
var zs = this.z.redSqr();
var rx = x.toRed(this.curve.red).redMul(zs);
if (this.x.cmp(rx) === 0)
return true;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function pointFromY
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
EdwardsCurve.prototype.pointFromY = function pointFromY(y, odd) {
y = new BN(y, 16);
if (!y.red)
y = y.toRed(this.red);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function _importPublic
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
KeyPair.prototype._importPublic = function _importPublic(key, enc) {
if (key.x || key.y) {
// Montgomery points only have an `x` coordinate.
// Weierstrass/Edwards points on the other hand have both `x` and
// `y` coordinates.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getLength
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
function getLength(buf, p) {
var initial = buf[p.place++];
if (!(initial & 0x80)) {
return initial;
}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function add
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
Point.prototype.add = function add(p) {
// O + P = P
if (this.inf)
return p;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function pointFromX
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
EdwardsCurve.prototype.pointFromX = function pointFromX(x, odd) {
x = new BN(x, 16);
if (!x.red)
x = x.toRed(this.red);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"