Showing 303 of 498 total issues
Avoid too many return
statements within this method. Open
return null;
Avoid too many return
statements within this method. Open
return null;
Avoid too many return
statements within this method. Open
return val;
Method internalReset
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
final void internalReset(long initialValue) {
Cell[] as = cells;
base = initialValue;
if (as != null) {
int n = as.length;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method supportsFences
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private static boolean supportsFences() {
if (UNSAFE == null) {
return false;
} else {
try {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method rotateRight
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private void rotateRight(TreeNode p) {
if (p != null) {
TreeNode l = p.left, pp, lr;
if ((lr = p.left = l.right) != null)
lr.parent = p;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sumThenReset
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public long sumThenReset() {
long sum = base;
Cell[] as = cells;
base = 0L;
if (as != null) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method rotateRight
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private void rotateRight(TreeNode p) {
if (p != null) {
TreeNode l = p.left, pp, lr;
if ((lr = p.left = l.right) != null)
lr.parent = p;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sum
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public long sum() {
long sum = base;
Cell[] as = cells;
if (as != null) {
int n = as.length;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sum
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public long sum() {
long sum = base;
Cell[] as = cells;
if (as != null) {
int n = as.length;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method nextLong
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public long nextLong(long n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
// Divide n by two until small enough for nextInt. On each
// iteration (at most 31 of them but usually much less),
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method addAll
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public boolean addAll(Collection<? extends K> c) {
boolean added = false;
V v;
if ((v = value) == null)
throw new UnsupportedOperationException();
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method addAll
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public boolean addAll(Collection<? extends K> c) {
boolean added = false;
V v;
if ((v = value) == null)
throw new UnsupportedOperationException();
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method rotateLeft
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private void rotateLeft(TreeNode p) {
if (p != null) {
TreeNode r = p.right, pp, rl;
if ((rl = p.right = r.left) != null)
rl.parent = p;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sumThenReset
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
public long sumThenReset() {
long sum = base;
Cell[] as = cells;
base = 0L;
if (as != null) {
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method rotateLeft
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
private void rotateLeft(TreeNode p) {
if (p != null) {
TreeNode r = p.right, pp, rl;
if ((rl = p.right = r.left) != null)
rl.parent = p;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method internalReset
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
final void internalReset(long initialValue) {
Cell[] as = cells;
base = initialValue;
if (as != null) {
int n = as.length;
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method zip
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def self.zip(*promises)
opts = promises.last.is_a?(::Hash) ? promises.pop.dup : {}
opts[:executor] ||= ImmediateExecutor.new
zero = if !opts.key?(:execute) || opts.delete(:execute)
fulfill([], opts)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method reconfigure
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def reconfigure(&block)
synchronize do
raise ArgumentError.new('no block given') unless block_given?
unless @evaluation_started
@task = block
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method if_state
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def if_state(*expected_states)
synchronize do
raise ArgumentError.new('no block given') unless block_given?
if expected_states.include? @state
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"