Showing 90 of 176 total issues
Function eeg_complexity
has 23 arguments (exceeds 4 allowed). Consider refactoring. Open
def eeg_complexity(eeg, sampling_rate, times=None, index=None, include="all", exclude=None, hemisphere="both", central=True, verbose=True, shannon=True, sampen=True, multiscale=True, spectral=True, svd=True, correlation=True, higushi=True, petrosian=True, fisher=True, hurst=True, dfa=True, lyap_r=False, lyap_e=False, names="Complexity"):
Function eeg_microstates_clustering
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def eeg_microstates_clustering(data, n_microstates=4, clustering_method="kmeans", n_jobs=1, n_init=25, occurence_rejection_treshold=0.05, max_refitting=5, verbose=True):
"""
Fit the clustering algorithm.
"""
# Create training set
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eeg_microstates
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def eeg_microstates(gfp, n_microstates=4, clustering_method="kmeans", n_jobs=1, n_init=25, occurence_rejection_treshold=0.05, max_refitting=5, clustering_metrics=True, good_fit_treshold=0, feature_reduction_method="PCA", n_features=32, nonlinearity=True, verbose=True):
"""
Run the full microstates analysis.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function rsp_find_cycles
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def rsp_find_cycles(signal):
"""
Find Respiratory cycles onsets, durations and phases.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function find_events
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def find_events(events_channel, treshold="auto", cut="higher", time_index=None, number="all", after=0, before=None, min_duration=1):
"""
Find and select events based on a continuous signal.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function complexity
has 20 arguments (exceeds 4 allowed). Consider refactoring. Open
def complexity(signal, sampling_rate=1000, shannon=True, sampen=True, multiscale=True, spectral=True, svd=True, correlation=True, higushi=True, petrosian=True, fisher=True, hurst=True, dfa=True, lyap_r=False, lyap_e=False, emb_dim=2, tolerance="default", k_max=8, bands=None, tau=1):
Function eeg_microstates_plot
has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring. Open
def eeg_microstates_plot(method, path="", extension=".png", show_sensors_position=False, show_sensors_name=False, plot=True, save=True, dpi=150, contours=0, colorbar=False, separate=False):
"""
Plot the microstates.
"""
# Generate and store figures
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eda_EventRelated
has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring. Open
def eda_EventRelated(epoch, event_length, window_post=4):
"""
Extract event-related EDA and Skin Conductance Response (SCR).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eeg_microstates_features
has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open
def eeg_microstates_features(results, method, ecg=True, nonlinearity=True, verbose=True):
"""
Compute statistics and features for/of the microstates.
"""
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function emg_process
has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open
def emg_process(emg, sampling_rate=1000, emg_names=None, envelope_freqs=[10, 400], envelope_lfreq=4, activation_treshold="default", activation_n_above=0.25, activation_n_below=1):
"""
Automated processing of EMG signal.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function plot_eeg_erp
has 16 arguments (exceeds 4 allowed). Consider refactoring. Open
def plot_eeg_erp(all_epochs, conditions=None, times=None, include="all", exclude=None, hemisphere="both", central=True, name=None, colors=None, gfp=False, ci=0.95, ci_alpha=0.333, invert_y=False, linewidth=1, linestyle="-", filter_hfreq=None):
Function eeg_power_per_epoch
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def eeg_power_per_epoch(epochs, include="all", exclude=None, hemisphere="both", include_central=True, frequency_bands="all", time_start=0, time_end="max", fill_bads="NA", print_progression=True):
"""
"""
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eeg_gfp
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def eeg_gfp(raws, gflp_method="GFPL1", scale=True, normalize=True, smoothing=None):
"""
Run the GFP analysis.
"""
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eeg_gfp_peaks
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def eeg_gfp_peaks(data, gflp_method='GFPL1', smoothing=False, smoothing_window=100, peak_method="wavelet", normalize=False):
"""
The Global Field Power (GFP) is a scalar measure of the strength of the scalp potential field and is calculated as the standard deviation of all electrodes at a given time point (Lehmann and Skrandies, 1980; Michel et al., 1993; Murray et al., 2008; Brunet et al., 2011). Between two GFP troughs, the strength of the potential field varies but the topography remains generally stable. The local maxima of the GFP are thus the best representative of a given microstate in terms of signal-to-noise ratio (Pascual-Marqui et al., 1995), corresponding to moments of high global neuronal synchronization (Skrandies, 2007).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function ecg_rsa
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def ecg_rsa(rpeaks, rsp, sampling_rate=1000):
"""
Returns Respiratory Sinus Arrhythmia (RSA) features. Only the Peak-to-trough (P2T) algorithm is currently implemented (see details).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function cvxEDA
has 41 lines of code (exceeds 25 allowed). Consider refactoring. Open
def cvxEDA(eda, sampling_rate=1000, tau0=2., tau1=0.7, delta_knot=10., alpha=8e-4, gamma=1e-2, solver=None, verbose=False, options={'reltol':1e-9}):
"""
A convex optimization approach to electrodermal activity processing (CVXEDA).
This function implements the cvxEDA algorithm described in "cvxEDA: a
Function eeg_microstates
has 13 arguments (exceeds 4 allowed). Consider refactoring. Open
def eeg_microstates(gfp, n_microstates=4, clustering_method="kmeans", n_jobs=1, n_init=25, occurence_rejection_treshold=0.05, max_refitting=5, clustering_metrics=True, good_fit_treshold=0, feature_reduction_method="PCA", n_features=32, nonlinearity=True, verbose=True):
Function ecg_hrv_assessment
has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open
def ecg_hrv_assessment(hrv, age=None, sex=None, position=None):
"""
Correct HRV features based on normative data from Voss et al. (2015).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eda_scr
has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open
def eda_scr(signal, sampling_rate=1000, treshold=0.1, method="fast"):
"""
Skin-Conductance Responses extraction algorithm.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function binarize_signal
has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open
def binarize_signal(signal, treshold="auto", cut="higher"):
"""
Binarize a channel based on a continuous channel.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"