Showing 16,139 of 22,252 total issues
Method execute_module
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def execute_module(path, method: :run, args: datastore, fail_on_exit: true)
mod = Msf::Modules::External.new(path, framework: framework)
success = mod.exec(method: method, args: args) do |m|
begin
case m.method
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method supports?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def supports?(plist)
plist.platforms.each { |pl|
supported = false
platforms.each { |p|
if p >= pl
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method find_platform_id
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def self.find_platform_id(platform)
# Handle a PlatformList input by grabbing the first entry
if platform.respond_to?(:platforms)
platform = platform.platforms.first.realname.downcase
end
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method generate_uri_uuid_mode
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def generate_uri_uuid_mode(mode, len = nil, uuid: nil)
sum = uri_checksum_lookup(mode)
# The URI length may not have room for an embedded UUID
if len && len < URI_CHECKSUM_UUID_MIN_LEN
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method asm_block_recv
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def asm_block_recv(opts={})
reliable = opts[:reliable]
asm = %Q^
recv:
; Receive the size of the incoming second stage...
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method stager_config
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def stager_config(opts={})
uri = generate_uri(opts)
ds = opts[:datastore] || datastore
c = super
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method _remote_destination_nix
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def _remote_destination_nix
return @remote_destination_nix unless @remote_destination_nix.nil?
writable_dir = datastore['FETCH_WRITABLE_DIR']
writable_dir = '.' if writable_dir.blank?
writable_dir += '/' unless writable_dir[-1] == '/'
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sniffer_off
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def sniffer_off(device)
return {} unless is_zigbee_hwbridge_session?
device = client.zigbee.target_device unless device
return {} unless verify_device(device)
client.zigbee.sniffer_off(device)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method inject
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def inject(device, data)
return {} unless is_zigbee_hwbridge_session?
device = client.zigbee.target_device unless device
return {} unless verify_device(device)
client.zigbee.inject(device, data)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method whoami
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def whoami
shellpid = get_session_pid()
status = read_file("/proc/#{shellpid}/status")
status.each_line do |line|
split = line.split(":")
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method asm_reverse_named_pipe
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def asm_reverse_named_pipe(opts={})
#reliable = opts[:reliable]
reliable = false
retry_count = [opts[:retry_count].to_i, 1].max
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method sniffer_on
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def sniffer_on(device)
return {} unless is_zigbee_hwbridge_session?
device = client.zigbee.target_device unless device
return {} unless verify_device(device)
client.zigbee.sniffer_on(device)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method _read_file_powershell
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def _read_file_powershell(filename)
data = ''
offset = 0
chunk_size = 65536
loop do
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method kill_process
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def kill_process(pid)
if session.type == 'meterpreter' && session.commands.include?(Rex::Post::Meterpreter::Extensions::Stdapi::COMMAND_ID_STDAPI_SYS_PROCESS_KILL)
session.sys.process.kill(pid)
return true
end
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method valid?
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def valid?(value, check_empty: nil)
return false unless super
return false unless value && File.file?(File.expand_path(value)) # no memory: locations
begin
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method recv
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def recv(device)
return {} unless is_zigbee_hwbridge_session?
device = client.zigbee.target_device unless device
return {} unless verify_device(device)
client.zigbee.recv(device)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method set_channel
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def set_channel(device, channel)
return {} unless is_zigbee_hwbridge_session?
device = client.zigbee.target_device unless device
return {} unless verify_device(device)
client.zigbee.set_channel(device, channel)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method clear_dtcs
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def clear_dtcs(bus, src_id, dst_id, opt = {})
unless client.automotive
print_error("Not an automotive hwbridge session")
return {}
end
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method clean_up
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def clean_up(script_file = nil, eof = '', running_pids = [], open_channels = [],
env_suffix = Rex::Text.rand_text_alpha(8), delete = false)
# Remove environment variables
env_del_command = "[Environment]::GetEnvironmentVariables('User').keys|"
env_del_command += "Select-String #{env_suffix}|%{"
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method get_monitor_status
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def get_monitor_status(bus, src_id, dst_id, opt = {})
opt['MAXPKTS'] = 1
packets = get_current_data(bus, src_id, dst_id, 0x01, opt)
return {} if packets.nil?
return packets if packets.key? "error"
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"