Showing 90 of 94 total issues
Method binary_op
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def binary_op(receiver, operator_t, arg)
source_map = send_binary_op_map(receiver, operator_t, arg)
if @parser.version == 18
operator = value(operator_t)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method rescue_body_map
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def rescue_body_map(keyword_t, exc_list_e, assoc_t,
exc_var_e, then_t,
compstmt_e)
end_l = compstmt_e.loc.expression if compstmt_e
end_l = loc(then_t) if end_l.nil? && then_t
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method keyword_map
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def keyword_map(keyword_t, begin_t, args, end_t)
args ||= []
if end_t
end_l = loc(end_t)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method string_compose
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def string_compose(begin_t, parts, end_t)
if collapse_string_parts?(parts)
if begin_t.nil? && end_t.nil?
parts.first
else
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method procarg0
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def procarg0(arg)
if self.class.emit_procarg0
if arg.type == :arg && self.class.emit_arg_inside_procarg0
n(:procarg0, [ arg ],
Source::Map::Collection.new(nil, nil, arg.location.expression))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method slice
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def slice(start, length = nil)
if length.nil?
if start.is_a?(::Range)
length = start.size
start = start.begin
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method string_map
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def string_map(begin_t, parts, end_t)
if begin_t && value(begin_t).start_with?('<<')
if parts.any?
expr_l = join_exprs(parts.first, parts.last)
else
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method array_pattern
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def array_pattern(lbrack_t, elements, rbrack_t)
return n(:array_pattern, nil, collection_map(lbrack_t, [], rbrack_t)) if elements.nil?
trailing_comma = false
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method place_in_hierarchy
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def place_in_hierarchy(action)
family = analyse_hierarchy(action)
if family[:fusible]
fuse_deletions(action, family[:fusible], [*family[:sibbling_left], *family[:child], *family[:sibbling_right]])
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method parse
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def parse(name)
puts "GEM: #{name}"
@result = {}
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"