File controls.py
has 472 lines of code (exceeds 400 allowed). Consider refactoring. Open
import collections
import os
import copy
from glob import glob
Function from_control_dict
has 27 lines of code (exceeds 25 allowed). Consider refactoring. Open
def from_control_dict(cls, control_dict, env_yaml=None, default_level=["default"]):
cls._check_keys(control_dict)
control = cls()
control.id = ssg.utils.required_key(control_dict, "id")
control.title = control_dict.get("title")
Rename field "status" Open
self.status = status
- Read upRead up
- Exclude checks
It's confusing to have a class member with the same name (case differences aside) as its enclosing class. This is particularly so when you consider the common practice of naming a class instance for the class itself.
Best practice dictates that any field or member with the same name as the enclosing class be renamed to be more descriptive of the particular aspect of the class it represents or holds.
Noncompliant Code Example
class Foo: foo = '' def getFoo(self): ... foo = Foo() foo.getFoo() # what does this return?
Compliant Solution
class Foo: name = '' def getName(self): ... foo = Foo() foo.getName()
Either remove or fill this block of code. Open
pass
- Read upRead up
- Exclude checks
Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.
Noncompliant Code Example
for i in range(3): pass
Exceptions
When a block contains a comment, this block is not considered to be empty.
Similar blocks of code found in 2 locations. Consider refactoring. Open
def get_control(self, control_id):
try:
c = self.controls_by_id[control_id]
return c
except KeyError:
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
def get_level(self, level_id):
try:
lv = self.levels_by_id[level_id]
return lv
except KeyError:
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 53.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
try:
control = Control.from_control_dict(
subtree, self.env_yaml, default_level=self.default_level)
except Exception as exc:
msg = (
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 35.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Ambiguous variable name 'l' Open
data["levels"] = [l.represent_as_dict() for l in self.levels]
- Read upRead up
- Exclude checks
Never use the characters 'l', 'O', or 'I' as variable names.
In some fonts, these characters are indistinguishable from the
numerals one and zero. When tempted to use 'l', use 'L' instead.
Okay: L = 0
Okay: o = 123
Okay: i = 42
E741: l = 0
E741: O = 123
E741: I = 42
Variables can be bound in several other contexts, including class
and function definitions, 'global' and 'nonlocal' statements,
exception handlers, and 'with' and 'for' statements.
In addition, we have a special handling for function parameters.
Okay: except AttributeError as o:
Okay: with lock as L:
Okay: foo(l=12)
Okay: for a in foo(l=12):
E741: except AttributeError as O:
E741: with lock as l:
E741: global I
E741: nonlocal l
E741: def foo(l):
E741: def foo(l=12):
E741: l = foo(l=12)
E741: for l in range(10):
E742: class I(object):
E743: def l(x):
Ambiguous variable name 'l' Open
eligible_levels = [l for l in self.get_level_with_ancestors_sequence(lv) if l not in levels.keys()]
- Read upRead up
- Exclude checks
Never use the characters 'l', 'O', or 'I' as variable names.
In some fonts, these characters are indistinguishable from the
numerals one and zero. When tempted to use 'l', use 'L' instead.
Okay: L = 0
Okay: o = 123
Okay: i = 42
E741: l = 0
E741: O = 123
E741: I = 42
Variables can be bound in several other contexts, including class
and function definitions, 'global' and 'nonlocal' statements,
exception handlers, and 'with' and 'for' statements.
In addition, we have a special handling for function parameters.
Okay: except AttributeError as o:
Okay: with lock as L:
Okay: foo(l=12)
Okay: for a in foo(l=12):
E741: except AttributeError as O:
E741: with lock as l:
E741: global I
E741: nonlocal l
E741: def foo(l):
E741: def foo(l=12):
E741: l = foo(l=12)
E741: for l in range(10):
E742: class I(object):
E743: def l(x):
Line too long (115 > 99 characters) Open
eligible_levels = [l for l in self.get_level_with_ancestors_sequence(lv) if l not in levels.keys()]
- Read upRead up
- Exclude checks
Limit all lines to a maximum of 79 characters.
There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side. The default wrapping on such
devices looks ugly. Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.
Reports error E501.
Ambiguous variable name 'l' Open
for l in eligible_levels:
- Read upRead up
- Exclude checks
Never use the characters 'l', 'O', or 'I' as variable names.
In some fonts, these characters are indistinguishable from the
numerals one and zero. When tempted to use 'l', use 'L' instead.
Okay: L = 0
Okay: o = 123
Okay: i = 42
E741: l = 0
E741: O = 123
E741: I = 42
Variables can be bound in several other contexts, including class
and function definitions, 'global' and 'nonlocal' statements,
exception handlers, and 'with' and 'for' statements.
In addition, we have a special handling for function parameters.
Okay: except AttributeError as o:
Okay: with lock as L:
Okay: foo(l=12)
Okay: for a in foo(l=12):
E741: except AttributeError as O:
E741: with lock as l:
E741: global I
E741: nonlocal l
E741: def foo(l):
E741: def foo(l=12):
E741: l = foo(l=12)
E741: for l in range(10):
E742: class I(object):
E743: def l(x):