ssg/ext/boolean/boolean.py
"""
Boolean expressions algebra.
This module defines a Boolean algebra over the set {TRUE, FALSE} with boolean
variables called Symbols and the boolean functions AND, OR, NOT.
Some basic logic comparison is supported: two expressions can be
compared for equivalence or containment. Furthermore you can simplify
an expression and obtain its normal form.
You can create expressions in Python using familiar boolean operators
or parse expressions from strings. The parsing can be extended with
your own tokenizer. You can also customize how expressions behave and
how they are presented.
For extensive documentation look either into the docs directory or view it
online, at https://booleanpy.readthedocs.org/en/latest/.
Copyright (c) 2009-2020 Sebastian Kraemer, basti.kr@gmail.com and others
SPDX-License-Identifier: BSD-2-Clause
"""
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
import inspect
import itertools
from operator import and_ as and_operator
from operator import or_ as or_operator
# Python 2 and 3
try:
basestring # NOQA
except NameError:
basestring = str # NOQA
# Python 2 and 3
try:
# Python 2
reduce # NOQA
except NameError:
# Python 3
from functools import reduce # NOQA
# Set to True to enable tracing for parsing
TRACE_PARSE = False
# Token types for standard operators and parens
TOKEN_AND = 1
TOKEN_OR = 2
TOKEN_NOT = 3
TOKEN_LPAR = 4
TOKEN_RPAR = 5
TOKEN_TRUE = 6
TOKEN_FALSE = 7
TOKEN_SYMBOL = 8
TOKEN_TYPES = {
TOKEN_AND: 'AND',
TOKEN_OR: 'OR',
TOKEN_NOT: 'NOT',
TOKEN_LPAR: '(',
TOKEN_RPAR: ')',
TOKEN_TRUE: 'TRUE',
TOKEN_FALSE: 'FALSE',
TOKEN_SYMBOL: 'SYMBOL',
}
# parsing error code and messages
PARSE_UNKNOWN_TOKEN = 1
PARSE_UNBALANCED_CLOSING_PARENS = 2
PARSE_INVALID_EXPRESSION = 3
PARSE_INVALID_NESTING = 4
PARSE_INVALID_SYMBOL_SEQUENCE = 5
PARSE_INVALID_OPERATOR_SEQUENCE = 6
PARSE_ERRORS = {
PARSE_UNKNOWN_TOKEN: 'Unknown token',
PARSE_UNBALANCED_CLOSING_PARENS: 'Unbalanced parenthesis',
PARSE_INVALID_EXPRESSION: 'Invalid expression',
PARSE_INVALID_NESTING: 'Invalid expression nesting such as (AND xx)',
PARSE_INVALID_SYMBOL_SEQUENCE: 'Invalid symbols sequence such as (A B)',
PARSE_INVALID_OPERATOR_SEQUENCE: 'Invalid operator sequence without symbols such as AND OR or OR OR',
}
class ParseError(Exception):
"""
Raised when the parser or tokenizer encounters a syntax error. Instances of
this class have attributes token_type, token_string, position, error_code to
access the details of the error. str() of the exception instance returns a
formatted message.
"""
def __init__(self, token_type=None, token_string='', position=-1, error_code=0):
self.token_type = token_type
self.token_string = token_string
self.position = position
self.error_code = error_code
def __str__(self, *args, **kwargs):
emsg = PARSE_ERRORS.get(self.error_code, 'Unknown parsing error')
tstr = ''
if self.token_string:
tstr = ' for token: "%s"' % self.token_string
pos = ''
if self.position > 0:
pos = ' at position: %d' % self.position
return '{emsg}{tstr}{pos}'.format(**locals())
class BooleanAlgebra(object):
"""
An algebra is defined by:
- the types of its operations and Symbol.
- the tokenizer used when parsing expressions from strings.
This class also serves as a base class for all boolean expressions,
including base elements, functions and variable symbols.
"""
def __init__(self, TRUE_class=None, FALSE_class=None, Symbol_class=None, Function_class=None,
NOT_class=None, AND_class=None, OR_class=None,
allowed_in_token=('.', ':', '_')):
"""
The types for TRUE, FALSE, NOT, AND, OR and Symbol define the boolean
algebra elements, operations and Symbol variable. They default to the
standard classes if not provided.
You can customize an algebra by providing alternative subclasses of the
standard types.
"""
# TRUE and FALSE base elements are algebra-level "singleton" instances
self.TRUE = TRUE_class or _TRUE
self.TRUE = self.TRUE()
self.FALSE = FALSE_class or _FALSE
self.FALSE = self.FALSE()
# they cross-reference each other
self.TRUE.dual = self.FALSE
self.FALSE.dual = self.TRUE
# boolean operation types, defaulting to the standard types
self.NOT = NOT_class or NOT
self.AND = AND_class or AND
self.OR = OR_class or OR
# class used for Symbols and Functions
self.Symbol = Symbol_class or Symbol
self.Function = Function_class or Function
tf_nao = {
'TRUE': self.TRUE,
'FALSE': self.FALSE,
'NOT': self.NOT,
'AND': self.AND,
'OR': self.OR,
'Symbol': self.Symbol,
'Function': self.Function # TODO: Do we need it?
}
# setup cross references such that all algebra types and
# objects hold a named attribute for every other types and
# objects, including themselves.
for obj in tf_nao.values():
for name, value in tf_nao.items():
setattr(obj, name, value)
# Set the set of characters allowed in tokens
self.allowed_in_token = allowed_in_token
def definition(self):
"""
Return a tuple of this algebra defined elements and types as:
(TRUE, FALSE, NOT, AND, OR, Symbol)
"""
return self.TRUE, self.FALSE, self.NOT, self.AND, self.OR, self.Symbol
def symbols(self, *args):
"""
Return a tuple of symbols building a new Symbol from each argument.
"""
return tuple(map(self.Symbol, args))
def parse(self, expr, simplify=False):
"""
Return a boolean expression parsed from `expr` either a unicode string
or tokens iterable.
Optionally simplify the expression if `simplify` is True.
Raise ParseError on errors.
If `expr` is a string, the standard `tokenizer` is used for tokenization
and the algebra configured Symbol type is used to create Symbol
instances from Symbol tokens.
If `expr` is an iterable, it should contain 3-tuples of: (token_type,
token_string, token_position). In this case, the `token_type` can be
a Symbol instance or one of the TOKEN_* constant types.
See the `tokenize()` method for detailed specification.
"""
precedence = {self.NOT: 5, self.AND: 10, self.OR: 15, TOKEN_LPAR: 20}
if isinstance(expr, basestring):
tokenized = self.tokenize(expr)
else:
tokenized = iter(expr)
if TRACE_PARSE:
tokenized = list(tokenized)
print('tokens:')
for t in tokenized:
print(t)
tokenized = iter(tokenized)
# the abstract syntax tree for this expression that will be build as we
# process tokens
# the first two items are None
# symbol items are appended to this structure
ast = [None, None]
def is_sym(_t):
return isinstance(_t, Symbol) or _t in (TOKEN_TRUE, TOKEN_FALSE, TOKEN_SYMBOL)
def is_operator(_t):
return _t in (TOKEN_AND, TOKEN_OR)
prev_token = None
for token_type, token_string, token_position in tokenized:
if TRACE_PARSE:
print('\nprocessing token_type:', repr(token_type), 'token_string:', repr(token_string), 'token_position:', repr(token_position))
if prev_token:
prev_token_type, _prev_token_string, _prev_token_position = prev_token
if TRACE_PARSE:
print(' prev_token:', repr(prev_token))
if is_sym(prev_token_type) and (is_sym(token_type)): # or token_type == TOKEN_LPAR) :
raise ParseError(token_type, token_string, token_position, PARSE_INVALID_SYMBOL_SEQUENCE)
if is_operator(prev_token_type) and (is_operator(token_type) or token_type == TOKEN_RPAR):
raise ParseError(token_type, token_string, token_position, PARSE_INVALID_OPERATOR_SEQUENCE)
else:
if is_operator(token_type):
raise ParseError(token_type, token_string, token_position, PARSE_INVALID_OPERATOR_SEQUENCE)
if token_type == TOKEN_SYMBOL:
ast.append(self.Symbol(token_string))
if TRACE_PARSE:
print(' ast: token_type is TOKEN_SYMBOL: append new symbol', repr(ast))
elif isinstance(token_type, Symbol):
ast.append(token_type)
if TRACE_PARSE:
print(' ast: token_type is Symbol): append existing symbol', repr(ast))
elif token_type == TOKEN_TRUE:
ast.append(self.TRUE)
if TRACE_PARSE: print(' ast: token_type is TOKEN_TRUE:', repr(ast))
elif token_type == TOKEN_FALSE:
ast.append(self.FALSE)
if TRACE_PARSE: print(' ast: token_type is TOKEN_FALSE:', repr(ast))
elif token_type == TOKEN_NOT:
ast = [ast, self.NOT]
if TRACE_PARSE: print(' ast: token_type is TOKEN_NOT:', repr(ast))
elif token_type == TOKEN_AND:
ast = self._start_operation(ast, self.AND, precedence)
if TRACE_PARSE:
print(' ast:token_type is TOKEN_AND: start_operation', ast)
elif token_type == TOKEN_OR:
ast = self._start_operation(ast, self.OR, precedence)
if TRACE_PARSE:
print(' ast:token_type is TOKEN_OR: start_operation', ast)
elif token_type == TOKEN_LPAR:
if prev_token:
# Check that an opening parens is preceded by a function
# or an opening parens
if prev_token_type not in (TOKEN_NOT, TOKEN_AND, TOKEN_OR, TOKEN_LPAR):
raise ParseError(token_type, token_string, token_position, PARSE_INVALID_NESTING)
ast = [ast, TOKEN_LPAR]
elif token_type == TOKEN_RPAR:
while True:
if ast[0] is None:
raise ParseError(token_type, token_string, token_position, PARSE_UNBALANCED_CLOSING_PARENS)
if ast[1] is TOKEN_LPAR:
ast[0].append(ast[2])
if TRACE_PARSE: print('ast9:', repr(ast))
ast = ast[0]
if TRACE_PARSE: print('ast10:', repr(ast))
break
if isinstance(ast[1], int):
raise ParseError(token_type, token_string, token_position, PARSE_UNBALANCED_CLOSING_PARENS)
# the parens are properly nested
# the top ast node should be a function subclass
if not (inspect.isclass(ast[1]) and issubclass(ast[1], self.Function)):
raise ParseError(token_type, token_string, token_position, PARSE_INVALID_NESTING)
subex = ast[1](*ast[2:])
ast[0].append(subex)
if TRACE_PARSE: print('ast11:', repr(ast))
ast = ast[0]
if TRACE_PARSE: print('ast12:', repr(ast))
else:
raise ParseError(token_type, token_string, token_position, PARSE_UNKNOWN_TOKEN)
prev_token = (token_type, token_string, token_position)
try:
while True:
if ast[0] is None:
if TRACE_PARSE: print('ast[0] is None:', repr(ast))
if ast[1] is None:
if TRACE_PARSE: print(' ast[1] is None:', repr(ast))
if len(ast) != 3:
raise ParseError(error_code=PARSE_INVALID_EXPRESSION)
parsed = ast[2]
if TRACE_PARSE: print(' parsed = ast[2]:', repr(parsed))
else:
# call the function in ast[1] with the rest of the ast as args
parsed = ast[1](*ast[2:])
if TRACE_PARSE: print(' parsed = ast[1](*ast[2:]):', repr(parsed))
break
else:
if TRACE_PARSE: print('subex = ast[1](*ast[2:]):', repr(ast))
subex = ast[1](*ast[2:])
ast[0].append(subex)
if TRACE_PARSE: print(' ast[0].append(subex):', repr(ast))
ast = ast[0]
if TRACE_PARSE: print(' ast = ast[0]:', repr(ast))
except TypeError:
raise ParseError(error_code=PARSE_INVALID_EXPRESSION)
if simplify:
return parsed.simplify()
if TRACE_PARSE: print('final parsed:', repr(parsed))
return parsed
def _start_operation(self, ast, operation, precedence):
"""
Return an AST where all operations of lower precedence are finalized.
"""
if TRACE_PARSE:
print(' start_operation:', repr(operation), 'AST:', ast)
op_prec = precedence[operation]
while True:
if ast[1] is None:
# [None, None, x]
if TRACE_PARSE: print(' start_op: ast[1] is None:', repr(ast))
ast[1] = operation
if TRACE_PARSE: print(' --> start_op: ast[1] is None:', repr(ast))
return ast
prec = precedence[ast[1]]
if prec > op_prec: # op=&, [ast, |, x, y] -> [[ast, |, x], &, y]
if TRACE_PARSE: print(' start_op: prec > op_prec:', repr(ast))
ast = [ast, operation, ast.pop(-1)]
if TRACE_PARSE: print(' --> start_op: prec > op_prec:', repr(ast))
return ast
if prec == op_prec: # op=&, [ast, &, x] -> [ast, &, x]
if TRACE_PARSE: print(' start_op: prec == op_prec:', repr(ast))
return ast
if not (inspect.isclass(ast[1]) and issubclass(ast[1], self.Function)):
# the top ast node should be a function subclass at this stage
raise ParseError(error_code=PARSE_INVALID_NESTING)
if ast[0] is None: # op=|, [None, &, x, y] -> [None, |, x&y]
if TRACE_PARSE: print(' start_op: ast[0] is None:', repr(ast))
subexp = ast[1](*ast[2:])
new_ast = [ast[0], operation, subexp]
if TRACE_PARSE: print(' --> start_op: ast[0] is None:', repr(new_ast))
return new_ast
else: # op=|, [[ast, &, x], ~, y] -> [ast, &, x, ~y]
if TRACE_PARSE: print(' start_op: else:', repr(ast))
ast[0].append(ast[1](*ast[2:]))
ast = ast[0]
if TRACE_PARSE: print(' --> start_op: else:', repr(ast))
def tokenize(self, expr):
"""
Return an iterable of 3-tuple describing each token given an expression
unicode string.
This 3-tuple contains (token, token string, position):
- token: either a Symbol instance or one of TOKEN_* token types.
- token string: the original token unicode string.
- position: some simple object describing the starting position of the
original token string in the `expr` string. It can be an int for a
character offset, or a tuple of starting (row/line, column).
The token position is used only for error reporting and can be None or
empty.
Raise ParseError on errors. The ParseError.args is a tuple of:
(token_string, position, error message)
You can use this tokenizer as a base to create specialized tokenizers
for your custom algebra by subclassing BooleanAlgebra. See also the
tests for other examples of alternative tokenizers.
This tokenizer has these characteristics:
- The `expr` string can span multiple lines,
- Whitespace is not significant.
- The returned position is the starting character offset of a token.
- A TOKEN_SYMBOL is returned for valid identifiers which is a string
without spaces. These are valid identifiers:
- Python identifiers.
- a string even if starting with digits
- digits (except for 0 and 1).
- dotted names : foo.bar consist of one token.
- names with colons: foo:bar consist of one token.
These are not identifiers:
- quoted strings.
- any punctuation which is not an operation
- Recognized operators are (in any upper/lower case combinations):
- for and: '*', '&', 'and'
- for or: '+', '|', 'or'
- for not: '~', '!', 'not'
- Recognized special symbols are (in any upper/lower case combinations):
- True symbols: 1 and True
- False symbols: 0, False and None
"""
if not isinstance(expr, basestring):
raise TypeError('expr must be string but it is %s.' % type(expr))
# mapping of lowercase token strings to a token type id for the standard
# operators, parens and common true or false symbols, as used in the
# default tokenizer implementation.
TOKENS = {
'*': TOKEN_AND, '&': TOKEN_AND, 'and': TOKEN_AND,
'+': TOKEN_OR, '|': TOKEN_OR, 'or': TOKEN_OR,
'~': TOKEN_NOT, '!': TOKEN_NOT, 'not': TOKEN_NOT,
'(': TOKEN_LPAR, ')': TOKEN_RPAR,
'[': TOKEN_LPAR, ']': TOKEN_RPAR,
'true': TOKEN_TRUE, '1': TOKEN_TRUE,
'false': TOKEN_FALSE, '0': TOKEN_FALSE, 'none': TOKEN_FALSE
}
position = 0
length = len(expr)
while position < length:
tok = expr[position]
sym = tok.isalnum() or tok == '_'
if sym:
position += 1
while position < length:
char = expr[position]
if char.isalnum() or char in self.allowed_in_token:
position += 1
tok += char
else:
break
position -= 1
try:
yield TOKENS[tok.lower()], tok, position
except KeyError:
if sym:
yield TOKEN_SYMBOL, tok, position
elif tok not in (' ', '\t', '\r', '\n'):
raise ParseError(token_string=tok, position=position,
error_code=PARSE_UNKNOWN_TOKEN)
position += 1
# TODO: explain what this means exactly
def _rdistributive(self, expr, op_example):
"""
Recursively flatten the `expr` expression for the `op_example`
AND or OR operation instance exmaple.
"""
if expr.isliteral:
return expr
expr_class = expr.__class__
args = (self._rdistributive(arg, op_example) for arg in expr.args)
args = tuple(arg.simplify() for arg in args)
if len(args) == 1:
return args[0]
expr = expr_class(*args)
dualoperation = op_example.dual
if isinstance(expr, dualoperation):
expr = expr.distributive()
return expr
def normalize(self, expr, operation):
"""
Return a normalized expression transformed to its normal form in the
given AND or OR operation.
The new expression arguments will satisfy these conditions:
- operation(*args) == expr (here mathematical equality is meant)
- the operation does not occur in any of its arg.
- NOT is only appearing in literals (aka. Negation normal form).
The operation must be an AND or OR operation or a subclass.
"""
# ensure that the operation is not NOT
assert operation in (self.AND, self.OR,)
# Move NOT inwards.
expr = expr.literalize()
# Simplify first otherwise _rdistributive() may take forever.
expr = expr.simplify()
operation_example = operation(self.TRUE, self.FALSE)
expr = self._rdistributive(expr, operation_example)
# Canonicalize
expr = expr.simplify()
return expr
def cnf(self, expr):
"""
Return a conjunctive normal form of the `expr` expression.
"""
return self.normalize(expr, self.AND)
def dnf(self, expr):
"""
Return a disjunctive normal form of the `expr` expression.
"""
return self.normalize(expr, self.OR)
class Expression(object):
"""
Abstract base class for all boolean expressions, including functions and
variable symbols.
"""
# Defines sort and comparison order between expressions arguments
sort_order = None
# Store arguments aka. subterms of this expressions.
# subterms are either literals or expressions.
args = tuple()
# True is this is a literal expression such as a Symbol, TRUE or FALSE
isliteral = False
# True if this expression has been simplified to in canonical form.
iscanonical = False
# these class attributes are configured when a new BooleanAlgebra is created
TRUE = None
FALSE = None
NOT = None
AND = None
OR = None
Symbol = None
@property
def objects(self):
"""
Return a set of all associated objects with this expression symbols.
Include recursively subexpressions objects.
"""
return set(s.obj for s in self.symbols)
def get_literals(self):
"""
Return a list of all the literals contained in this expression.
Include recursively subexpressions symbols.
This includes duplicates.
"""
if self.isliteral:
return [self]
if not self.args:
return []
return list(itertools.chain.from_iterable(arg.get_literals() for arg in self.args))
@property
def literals(self):
"""
Return a set of all literals contained in this expression.
Include recursively subexpressions literals.
"""
return set(self.get_literals())
def literalize(self):
"""
Return an expression where NOTs are only occurring as literals.
Applied recursively to subexpressions.
"""
if self.isliteral:
return self
args = tuple(arg.literalize() for arg in self.args)
if all(arg is self.args[i] for i, arg in enumerate(args)):
return self
return self.__class__(*args)
def get_symbols(self):
"""
Return a list of all the symbols contained in this expression.
Include recursively subexpressions symbols.
This includes duplicates.
"""
return [s if isinstance(s, Symbol) else s.args[0] for s in self.get_literals()]
@property
def symbols(self,):
"""
Return a list of all the symbols contained in this expression.
Include recursively subexpressions symbols.
This includes duplicates.
"""
return set(self.get_symbols())
def subs(self, substitutions, default=None, simplify=False):
"""
Return an expression where the expression or all subterms equal to a key
expression are substituted with the corresponding value expression using
a mapping of: {expr->expr to substitute.}
Return this expression unmodified if nothing could be substituted.
Note that this can be used to tested for expression containment.
"""
# shortcut: check if we have our whole expression as a possible
# subsitution source
for expr, substitution in substitutions.items():
if expr == self:
return substitution
# otherwise, do a proper substitution of sub expressions
expr = self._subs(substitutions, default, simplify)
return self if expr is None else expr
def _subs(self, substitutions, default, simplify):
"""
Return an expression where all subterms equal to a key expression are
substituted by the corresponding value expression using a mapping of:
{expr->expr to substitute.}
"""
# track the new list of unchanged args or replaced args through
# a substitution
new_arguments = []
changed_something = False
# shortcut for basic logic True or False
if self is self.TRUE or self is self.FALSE:
return self
# if the expression has no elements, e.g. is empty, do not apply
# substitions
if not self.args:
return default
# iterate the subexpressions: either plain symbols or a subexpressions
for arg in self.args:
# collect substitutions for exact matches
# break as soon as we have a match
for expr, substitution in substitutions.items():
if arg == expr:
new_arguments.append(substitution)
changed_something = True
break
# this will execute only if we did not break out of the
# loop, e.g. if we did not change anything and did not
# collect any substitutions
else:
# recursively call _subs on each arg to see if we get a
# substituted arg
new_arg = arg._subs(substitutions, default, simplify)
if new_arg is None:
# if we did not collect a substitution for this arg,
# keep the arg as-is, it is not replaced by anything
new_arguments.append(arg)
else:
# otherwise, we add the substitution for this arg instead
new_arguments.append(new_arg)
changed_something = True
if not changed_something:
return
# here we did some substitution: we return a new expression
# built from the new_arguments
newexpr = self.__class__(*new_arguments)
return newexpr.simplify() if simplify else newexpr
def simplify(self):
"""
Return a new simplified expression in canonical form built from this
expression. The simplified expression may be exactly the same as this
expression.
Subclasses override this method to compute actual simplification.
"""
return self
def __hash__(self):
"""
Expressions are immutable and hashable. The hash of Functions is
computed by respecting the structure of the whole expression by mixing
the class name hash and the recursive hash of a frozenset of arguments.
Hash of elements is based on their boolean equivalent. Hash of symbols
is based on their object.
"""
if not self.args:
arghash = id(self)
else:
arghash = hash(frozenset(map(hash, self.args)))
return hash(self.__class__.__name__) ^ arghash
def __eq__(self, other):
"""
Test if other element is structurally the same as itself.
This method does not make any simplification or transformation, so it
will return False although the expression terms may be mathematically
equal. Use simplify() before testing equality.
For literals, plain equality is used.
For functions, it uses the facts that operations are:
- commutative and considers different ordering as equal.
- idempotent, so args can appear more often in one term than in the other.
"""
if self is other:
return True
if isinstance(other, self.__class__):
return frozenset(self.args) == frozenset(other.args)
return NotImplemented
def __ne__(self, other):
return not self == other
def __lt__(self, other):
if self.sort_order is not None and other.sort_order is not None:
if self.sort_order == other.sort_order:
return NotImplemented
return self.sort_order < other.sort_order
return NotImplemented
def __gt__(self, other):
lt = other.__lt__(self)
if lt is NotImplemented:
return not self.__lt__(other)
return lt
def __and__(self, other):
return self.AND(self, other)
__mul__ = __and__
def __invert__(self):
return self.NOT(self)
def __or__(self, other):
return self.OR(self, other)
__add__ = __or__
def __bool__(self):
raise TypeError('Cannot evaluate expression as a Python Boolean.')
__nonzero__ = __bool__
class BaseElement(Expression):
"""
Abstract base class for the base elements TRUE and FALSE of the boolean
algebra.
"""
sort_order = 0
def __init__(self):
super(BaseElement, self).__init__()
self.iscanonical = True
# The dual Base Element class for this element: TRUE.dual returns
# _FALSE() and FALSE.dual returns _TRUE(). This is a cyclic reference
# and therefore only assigned after creation of the singletons,
self.dual = None
def __lt__(self, other):
if isinstance(other, BaseElement):
return self == self.FALSE
return NotImplemented
__nonzero__ = __bool__ = lambda s: None
def pretty(self, indent=0, debug=False):
"""
Return a pretty formatted representation of self.
"""
return (' ' * indent) + repr(self)
class _TRUE(BaseElement):
"""
Boolean base element TRUE.
Not meant to be subclassed nor instantiated directly.
"""
def __init__(self):
super(_TRUE, self).__init__()
# assigned at singleton creation: self.dual = FALSE
def __hash__(self):
return hash(True)
def __eq__(self, other):
return self is other or other is True or isinstance(other, _TRUE)
def __str__(self):
return '1'
def __repr__(self):
return 'TRUE'
def __call__(self):
return self
__nonzero__ = __bool__ = lambda s: True
class _FALSE(BaseElement):
"""
Boolean base element FALSE.
Not meant to be subclassed nor instantiated directly.
"""
def __init__(self):
super(_FALSE, self).__init__()
# assigned at singleton creation: self.dual = TRUE
def __hash__(self):
return hash(False)
def __eq__(self, other):
return self is other or other is False or isinstance(other, _FALSE)
def __str__(self):
return '0'
def __repr__(self):
return 'FALSE'
def __call__(self):
return self
__nonzero__ = __bool__ = lambda s: False
class Symbol(Expression):
"""
Boolean variable.
A Symbol can hold an object used to determine equality between symbols.
"""
sort_order = 5
def __init__(self, obj):
super(Symbol, self).__init__()
# Store an associated object. This object determines equality
self.obj = obj
self.iscanonical = True
self.isliteral = True
def __call__(self, **kwargs):
"""
Return the evaluated value for this symbol from kwargs
"""
return kwargs[self.obj]
def __hash__(self):
if self.obj is None: # Anonymous Symbol.
return id(self)
return hash(self.obj)
def __eq__(self, other):
if self is other:
return True
if isinstance(other, self.__class__):
return self.obj == other.obj
return NotImplemented
def __lt__(self, other):
comparator = Expression.__lt__(self, other)
if comparator is not NotImplemented:
return comparator
if isinstance(other, Symbol):
return self.obj < other.obj
return NotImplemented
def __str__(self):
return str(self.obj)
def __repr__(self):
obj = "'%s'" % self.obj if isinstance(self.obj, basestring) else repr(self.obj)
return '%s(%s)' % (self.__class__.__name__, obj)
def pretty(self, indent=0, debug=False):
"""
Return a pretty formatted representation of self.
"""
debug_details = ''
if debug:
debug_details += '<isliteral=%r, iscanonical=%r>' % (self.isliteral, self.iscanonical)
obj = "'%s'" % self.obj if isinstance(self.obj, basestring) else repr(self.obj)
return (' ' * indent) + ('%s(%s%s)' % (self.__class__.__name__, debug_details, obj))
class Function(Expression):
"""
Boolean function.
A boolean function takes n (one or more) boolean expressions as arguments
where n is called the order of the function and maps them to one of the base
elements TRUE or FALSE. Implemented functions are AND, OR and NOT.
"""
def __init__(self, *args):
super(Function, self).__init__()
# Specifies an infix notation of an operator for printing such as | or &.
self.operator = None
assert all(isinstance(arg, Expression) for arg in args), \
'Bad arguments: all arguments must be an Expression: %r' % (args,)
self.args = tuple(args)
def __str__(self):
args = self.args
if len(args) == 1:
if self.isliteral:
return '%s%s' % (self.operator, args[0])
return '%s(%s)' % (self.operator, args[0])
args_str = []
for arg in args:
if arg.isliteral:
args_str.append(str(arg))
else:
args_str.append('(%s)' % arg)
return self.operator.join(args_str)
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, ', '.join(map(repr, self.args)))
def pretty(self, indent=0, debug=False):
"""
Return a pretty formatted representation of self as an indented tree.
If debug is True, also prints debug information for each expression arg.
For example::
>>> print(BooleanAlgebra().parse(
... u'not a and not b and not (a and ba and c) and c or c').pretty())
OR(
AND(
NOT(Symbol('a')),
NOT(Symbol('b')),
NOT(
AND(
Symbol('a'),
Symbol('ba'),
Symbol('c')
)
),
Symbol('c')
),
Symbol('c')
)
"""
debug_details = ''
if debug:
debug_details += '<isliteral=%r, iscanonical=%r' % (self.isliteral, self.iscanonical)
identity = getattr(self, 'identity', None)
if identity is not None:
debug_details += ', identity=%r' % (identity)
annihilator = getattr(self, 'annihilator', None)
if annihilator is not None:
debug_details += ', annihilator=%r' % (annihilator)
dual = getattr(self, 'dual', None)
if dual is not None:
debug_details += ', dual=%r' % (dual)
debug_details += '>'
cls = self.__class__.__name__
args = [a.pretty(indent=indent + 2, debug=debug) for a in self.args]
pfargs = ',\n'.join(args)
cur_indent = ' ' * indent
new_line = '' if self.isliteral else '\n'
return '{cur_indent}{cls}({debug_details}{new_line}{pfargs}\n{cur_indent})'.format(**locals())
class NOT(Function):
"""
Boolean NOT operation.
The NOT operation takes exactly one argument. If this argument is a Symbol
the resulting expression is also called a literal.
The operator "~" can be used as abbreviation for NOT, e.g. instead of NOT(x)
one can write ~x (where x is some boolean expression). Also for printing "~"
is used for better readability.
You can subclass to define alternative string representation.
For example::
>>> class NOT2(NOT):
... def __init__(self, *args):
... super(NOT2, self).__init__(*args)
... self.operator = '!'
"""
def __init__(self, arg1):
super(NOT, self).__init__(arg1)
self.isliteral = isinstance(self.args[0], Symbol)
self.operator = '~'
def literalize(self):
"""
Return an expression where NOTs are only occurring as literals.
"""
expr = self.demorgan()
if isinstance(expr, self.__class__):
return expr
return expr.literalize()
def simplify(self):
"""
Return a simplified expr in canonical form.
This means double negations are canceled out and all contained boolean
objects are in their canonical form.
"""
if self.iscanonical:
return self
expr = self.cancel()
if not isinstance(expr, self.__class__):
return expr.simplify()
if expr.args[0] in (self.TRUE, self.FALSE,):
return expr.args[0].dual
expr = self.__class__(expr.args[0].simplify())
expr.iscanonical = True
return expr
def cancel(self):
"""
Cancel itself and following NOTs as far as possible.
Returns the simplified expression.
"""
expr = self
while True:
arg = expr.args[0]
if not isinstance(arg, self.__class__):
return expr
expr = arg.args[0]
if not isinstance(expr, self.__class__):
return expr
def demorgan(self):
"""
Return a expr where the NOT function is moved inward.
This is achieved by canceling double NOTs and using De Morgan laws.
"""
expr = self.cancel()
if expr.isliteral or not isinstance(expr, self.NOT):
return expr
op = expr.args[0]
return op.dual(*(self.__class__(arg).cancel() for arg in op.args))
def __call__(self, **kwargs):
"""
Return the evaluated (negated) value for this function.
"""
return not self.args[0](**kwargs)
def __lt__(self, other):
return self.args[0] < other
def pretty(self, indent=1, debug=False):
"""
Return a pretty formatted representation of self.
Include additional debug details if `debug` is True.
"""
debug_details = ''
if debug:
debug_details += '<isliteral=%r, iscanonical=%r>' % (self.isliteral, self.iscanonical)
if self.isliteral:
pretty_literal = self.args[0].pretty(indent=0, debug=debug)
return (' ' * indent) + '%s(%s%s)' % (self.__class__.__name__, debug_details, pretty_literal)
else:
return super(NOT, self).pretty(indent=indent, debug=debug)
class DualBase(Function):
"""
Base class for AND and OR function.
This class uses the duality principle to combine similar methods of AND
and OR. Both operations take 2 or more arguments and can be created using
"|" for OR and "&" for AND.
"""
_pyoperator = None
def __init__(self, arg1, arg2, *args):
super(DualBase, self).__init__(arg1, arg2, *args)
# identity element for the specific operation.
# This will be TRUE for the AND operation and FALSE for the OR operation.
self.identity = None
# annihilator element for this function.
# This will be FALSE for the AND operation and TRUE for the OR operation.
self.annihilator = None
# dual class of this function.
# This means OR.dual returns AND and AND.dual returns OR.
self.dual = None
def __contains__(self, expr):
"""
Test if expr is a subterm of this expression.
"""
if expr in self.args:
return True
if isinstance(expr, self.__class__):
return all(arg in self.args for arg in expr.args)
def simplify(self, sort=True):
"""
Return a new simplified expression in canonical form from this
expression.
For simplification of AND and OR fthe ollowing rules are used
recursively bottom up:
- Associativity (output does not contain same operations nested)
- Annihilation
- Idempotence
- Identity
- Complementation
- Elimination
- Absorption
- Commutativity (output is always sorted)
Other boolean objects are also in their canonical form.
"""
# TODO: Refactor DualBase.simplify into different "sub-evals".
# If self is already canonical do nothing.
if self.iscanonical:
return self
# Otherwise bring arguments into canonical form.
args = [arg.simplify() for arg in self.args]
# Create new instance of own class with canonical args.
# TODO: Only create new class if some args changed.
expr = self.__class__(*args)
# Literalize before doing anything, this also applies De Morgan's Law
expr = expr.literalize()
# Associativity:
# (A & B) & C = A & (B & C) = A & B & C
# (A | B) | C = A | (B | C) = A | B | C
expr = expr.flatten()
# Annihilation: A & 0 = 0, A | 1 = 1
if self.annihilator in expr.args:
return self.annihilator
# Idempotence: A & A = A, A | A = A
# this boils down to removing duplicates
args = []
for arg in expr.args:
if arg not in args:
args.append(arg)
if len(args) == 1:
return args[0]
# Identity: A & 1 = A, A | 0 = A
if self.identity in args:
args.remove(self.identity)
if len(args) == 1:
return args[0]
# Complementation: A & ~A = 0, A | ~A = 1
for arg in args:
if self.NOT(arg) in args:
return self.annihilator
# Elimination: (A & B) | (A & ~B) = A, (A | B) & (A | ~B) = A
i = 0
while i < len(args) - 1:
j = i + 1
ai = args[i]
if not isinstance(ai, self.dual):
i += 1
continue
while j < len(args):
aj = args[j]
if not isinstance(aj, self.dual) or len(ai.args) != len(aj.args):
j += 1
continue
# Find terms where only one arg is different.
negated = None
for arg in ai.args:
# FIXME: what does this pass Do?
if arg in aj.args:
pass
elif self.NOT(arg).cancel() in aj.args:
if negated is None:
negated = arg
else:
negated = None
break
else:
negated = None
break
# If the different arg is a negation simplify the expr.
if negated is not None:
# Cancel out one of the two terms.
del args[j]
aiargs = list(ai.args)
aiargs.remove(negated)
if len(aiargs) == 1:
args[i] = aiargs[0]
else:
args[i] = self.dual(*aiargs)
if len(args) == 1:
return args[0]
else:
# Now the other simplifications have to be redone.
return self.__class__(*args).simplify()
j += 1
i += 1
# Absorption: A & (A | B) = A, A | (A & B) = A
# Negative absorption: A & (~A | B) = A & B, A | (~A & B) = A | B
args = self.absorb(args)
if len(args) == 1:
return args[0]
# Commutativity: A & B = B & A, A | B = B | A
if sort:
args.sort()
# Create new (now canonical) expression.
expr = self.__class__(*args)
expr.iscanonical = True
return expr
def flatten(self):
"""
Return a new expression where nested terms of this expression are
flattened as far as possible.
E.g. A & (B & C) becomes A & B & C.
"""
args = list(self.args)
i = 0
for arg in self.args:
if isinstance(arg, self.__class__):
args[i:i + 1] = arg.args
i += len(arg.args)
else:
i += 1
return self.__class__(*args)
def absorb(self, args):
"""
Given an `args` sequence of expressions, return a new list of expression
applying absorption and negative absorption.
See https://en.wikipedia.org/wiki/Absorption_law
Absorption: A & (A | B) = A, A | (A & B) = A
Negative absorption: A & (~A | B) = A & B, A | (~A & B) = A | B
"""
args = list(args)
if not args:
args = list(self.args)
i = 0
while i < len(args):
absorber = args[i]
j = 0
while j < len(args):
if j == i:
j += 1
continue
target = args[j]
if not isinstance(target, self.dual):
j += 1
continue
# Absorption
if absorber in target:
del args[j]
if j < i:
i -= 1
continue
# Negative absorption
neg_absorber = self.NOT(absorber).cancel()
if neg_absorber in target:
b = target.subtract(neg_absorber, simplify=False)
if b is None:
del args[j]
if j < i:
i -= 1
continue
else:
args[j] = b
j += 1
continue
if isinstance(absorber, self.dual):
remove = None
for arg in absorber.args:
narg = self.NOT(arg).cancel()
if arg in target.args:
pass
elif narg in target.args:
if remove is None:
remove = narg
else:
remove = None
break
else:
remove = None
break
if remove is not None:
args[j] = target.subtract(remove, simplify=True)
j += 1
i += 1
return args
def subtract(self, expr, simplify):
"""
Return a new expression where the `expr` expression has been removed
from this expression if it exists.
"""
args = self.args
if expr in self.args:
args = list(self.args)
args.remove(expr)
elif isinstance(expr, self.__class__):
if all(arg in self.args for arg in expr.args):
args = tuple(arg for arg in self.args if arg not in expr)
if len(args) == 0:
return None
if len(args) == 1:
return args[0]
newexpr = self.__class__(*args)
if simplify:
newexpr = newexpr.simplify()
return newexpr
def distributive(self):
"""
Return a term where the leading AND or OR terms are switched.
This is done by applying the distributive laws:
A & (B|C) = (A&B) | (A&C)
A | (B&C) = (A|B) & (A|C)
"""
dual = self.dual
args = list(self.args)
for i, arg in enumerate(args):
if isinstance(arg, dual):
args[i] = arg.args
else:
args[i] = (arg,)
prod = itertools.product(*args)
args = tuple(self.__class__(*arg).simplify() for arg in prod)
if len(args) == 1:
return args[0]
else:
return dual(*args)
def __lt__(self, other):
comparator = Expression.__lt__(self, other)
if comparator is not NotImplemented:
return comparator
if isinstance(other, self.__class__):
lenself = len(self.args)
lenother = len(other.args)
for i in range(min(lenself, lenother)):
if self.args[i] == other.args[i]:
continue
comparator = self.args[i] < other.args[i]
if comparator is not NotImplemented:
return comparator
if lenself != lenother:
return lenself < lenother
return NotImplemented
def __call__(self, **kwargs):
"""
Return the evaluation of this expression by calling each of its arg as
arg(**kwargs) and applying its corresponding Python operator (and or or)
to the results.
Reduce is used as in e.g. AND(a, b, c, d) == AND(a, AND(b, AND(c, d)))
ore.g. OR(a, b, c, d) == OR(a, OR(b, OR(c, d)))
"""
return reduce(self._pyoperator, (a(**kwargs) for a in self.args))
class AND(DualBase):
"""
Boolean AND operation, taking 2 or more arguments.
It can also be created by using "&" between two boolean expressions.
You can subclass to define alternative string representation.
For example::
>>> class AND2(AND):
... def __init__(self, *args):
... super(AND2, self).__init__(*args)
... self.operator = 'AND'
"""
sort_order = 10
_pyoperator = and_operator
def __init__(self, arg1, arg2, *args):
super(AND, self).__init__(arg1, arg2, *args)
self.identity = self.TRUE
self.annihilator = self.FALSE
self.dual = self.OR
self.operator = '&'
class OR(DualBase):
"""
Boolean OR operation, taking 2 or more arguments
It can also be created by using "|" between two boolean expressions.
You can subclass to define alternative string representation.
For example::
>>> class OR2(OR):
... def __init__(self, *args):
... super(OR2, self).__init__(*args)
... self.operator = 'OR'
"""
sort_order = 25
_pyoperator = or_operator
def __init__(self, arg1, arg2, *args):
super(OR, self).__init__(arg1, arg2, *args)
self.identity = self.FALSE
self.annihilator = self.TRUE
self.dual = self.AND
self.operator = '|'