File ansible_playbook_to_role.py
has 487 lines of code (exceeds 400 allowed). Consider refactoring. Open
#!/usr/bin/python3
from __future__ import print_function
from tempfile import mkdtemp
Function main
has a Cognitive Complexity of 21 (exceeds 7 allowed). Consider refactoring. Open
def main():
args = parse_args()
product_allowlist = set(PRODUCT_ALLOWLIST)
profile_allowlist = set(PROFILE_ALLOWLIST)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
PlaybookToRoleConverter
has 23 functions (exceeds 20 allowed). Consider refactoring. Open
class PlaybookToRoleConverter():
PRODUCED_FILES = ('defaults/main.yml', 'meta/main.yml', 'tasks/main.yml', 'vars/main.yml',
'README.md')
def __init__(self, local_playbook_filename):
Cyclomatic complexity is too high in function main. (14) Open
def main():
args = parse_args()
product_allowlist = set(PRODUCT_ALLOWLIST)
profile_allowlist = set(PROFILE_ALLOWLIST)
- Read upRead up
- Exclude checks
Cyclomatic Complexity
Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.
Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:
Construct | Effect on CC | Reasoning |
---|---|---|
if | +1 | An if statement is a single decision. |
elif | +1 | The elif statement adds another decision. |
else | +0 | The else statement does not cause a new decision. The decision is at the if. |
for | +1 | There is a decision at the start of the loop. |
while | +1 | There is a decision at the while statement. |
except | +1 | Each except branch adds a new conditional path of execution. |
finally | +0 | The finally block is unconditionally executed. |
with | +1 | The with statement roughly corresponds to a try/except block (see PEP 343 for details). |
assert | +1 | The assert statement internally roughly equals a conditional statement. |
Comprehension | +1 | A list/set/dict comprehension of generator expression is equivalent to a for loop. |
Boolean Operator | +1 | Every boolean operator (and, or) adds a decision point. |
Avoid too many return
statements within this function. Open
return self._generate_meta_content()
Avoid too many return
statements within this function. Open
return self._generate_defaults_content()
Function added_variables
has a Cognitive Complexity of 8 (exceeds 7 allowed). Consider refactoring. Open
def added_variables(self):
variables = set()
for task in self.tasks_data:
if "tags" not in task:
next
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function file
has a Cognitive Complexity of 8 (exceeds 7 allowed). Consider refactoring. Open
def file(self, filepath):
if filepath == 'tasks/main.yml':
return self.tasks_local_content
elif filepath == 'vars/main.yml':
if len(self.vars_data) < 1:
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Refactor this function to reduce its Cognitive Complexity from 21 to the 15 allowed. Open
def main():
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be difficult to maintain.
See
Either remove or fill this block of code. Open
pass
- Read upRead up
- Exclude checks
Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.
Noncompliant Code Example
for i in range(3): pass
Exceptions
When a block contains a comment, this block is not considered to be empty.
Expected 2 blank lines after class or function definition, found 1 Open
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
- Read upRead up
- Exclude checks
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank
line.
Extra blank lines may be used (sparingly) to separate groups of
related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical
sections.
Okay: def a():\n pass\n\n\ndef b():\n pass
Okay: def a():\n pass\n\n\nasync def b():\n pass
Okay: def a():\n pass\n\n\n# Foo\n# Bar\n\ndef b():\n pass
Okay: default = 1\nfoo = 1
Okay: classify = 1\nfoo = 1
E301: class Foo:\n b = 0\n def bar():\n pass
E302: def a():\n pass\n\ndef b(n):\n pass
E302: def a():\n pass\n\nasync def b(n):\n pass
E303: def a():\n pass\n\n\n\ndef b(n):\n pass
E303: def a():\n\n\n\n pass
E304: @decorator\n\ndef a():\n pass
E305: def a():\n pass\na()
E306: def a():\n def b():\n pass\n def c():\n pass
Line too long (140 > 99 characters) Open
print("Converting Ansible Playbook {} to Ansible Role {}".format(self._local_playbook_filename, os.path.join(directory, self.name)))
- Read upRead up
- Exclude checks
Limit all lines to a maximum of 79 characters.
There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side. The default wrapping on such
devices looks ugly. Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.
Reports error E501.
Line too long (126 > 99 characters) Open
github_new_repos = sorted(list(set(map(str.lower, selected_roles.keys())) - set(map(str.lower, github_repositories))))
- Read upRead up
- Exclude checks
Limit all lines to a maximum of 79 characters.
There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side. The default wrapping on such
devices looks ugly. Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.
Reports error E501.