Fantom-foundation/go-lachesis

View on GitHub
kvdb/leveldb/leveldb.go

Summary

Maintainability
C
1 day
Test Coverage
// +build !js

// Package leveldb implements the key-value database layer based on LevelDB.
package leveldb

import (
    "fmt"
    "strconv"
    "strings"
    "sync"
    "time"

    "github.com/ethereum/go-ethereum/common"
    "github.com/ethereum/go-ethereum/ethdb"
    "github.com/ethereum/go-ethereum/log"
    "github.com/ethereum/go-ethereum/metrics"
    "github.com/syndtr/goleveldb/leveldb"
    "github.com/syndtr/goleveldb/leveldb/errors"
    "github.com/syndtr/goleveldb/leveldb/filter"
    "github.com/syndtr/goleveldb/leveldb/opt"
    "github.com/syndtr/goleveldb/leveldb/util"
)

const (
    // degradationWarnInterval specifies how often warning should be printed if the
    // leveldb database cannot keep up with requested writes.
    degradationWarnInterval = time.Minute

    // minCache is the minimum amount of memory in megabytes to allocate to leveldb
    // read and write caching, split half and half.
    minCache = 16

    // minHandles is the minimum number of files handles to allocate to the open
    // database files.
    minHandles = 16

    // metricsGatheringInterval specifies the interval to retrieve leveldb database
    // compaction, io and pause stats to report to the user.
    metricsGatheringInterval = 3 * time.Second
)

// Database is a persistent key-value store. Apart from basic data storage
// functionality it also supports batch writes and iterating over the keyspace in
// binary-alphabetical order.
type Database struct {
    fn string      // filename for reporting
    db *leveldb.DB // LevelDB instance

    compTimeMeter    metrics.Meter // Meter for measuring the total time spent in database compaction
    compReadMeter    metrics.Meter // Meter for measuring the data read during compaction
    compWriteMeter   metrics.Meter // Meter for measuring the data written during compaction
    writeDelayNMeter metrics.Meter // Meter for measuring the write delay number due to database compaction
    writeDelayMeter  metrics.Meter // Meter for measuring the write delay duration due to database compaction
    diskSizeGauge    metrics.Gauge // Gauge for tracking the size of all the levels in the database
    diskReadMeter    metrics.Meter // Meter for measuring the effective amount of data read
    diskWriteMeter   metrics.Meter // Meter for measuring the effective amount of data written

    quitLock sync.Mutex      // Mutex protecting the quit channel access
    quitChan chan chan error // Quit channel to stop the metrics collection before closing the database

    log log.Logger // Contextual logger tracking the database path

    onClose func() error
    onDrop  func()
}

// New returns a wrapped LevelDB object. The namespace is the prefix that the
// metrics reporting should use for surfacing internal stats.
func New(path string, cache int, handles int, namespace string, close func() error, drop func()) (*Database, error) {
    // Ensure we have some minimal caching and file guarantees
    if cache < minCache {
        cache = minCache
    }
    if handles < minHandles {
        handles = minHandles
    }
    logger := log.New("database", path)
    logger.Info("Allocated cache and file handles", "cache", common.StorageSize(cache*1024*1024), "handles", handles)

    // Open the db and recover any potential corruptions
    db, err := leveldb.OpenFile(path, &opt.Options{
        OpenFilesCacheCapacity: handles,
        BlockCacheCapacity:     cache / 2 * opt.MiB,
        WriteBuffer:            cache / 4 * opt.MiB, // Two of these are used internally
        Filter:                 filter.NewBloomFilter(10),
    })
    if _, corrupted := err.(*errors.ErrCorrupted); corrupted {
        db, err = leveldb.RecoverFile(path, nil)
    }
    if err != nil {
        return nil, err
    }
    // Assemble the wrapper with all the registered metrics
    ldb := &Database{
        fn:       path,
        db:       db,
        log:      logger,
        quitChan: make(chan chan error),
    }
    ldb.compTimeMeter = metrics.NewRegisteredMeter(namespace+"compact/time", nil)
    ldb.compReadMeter = metrics.NewRegisteredMeter(namespace+"compact/input", nil)
    ldb.compWriteMeter = metrics.NewRegisteredMeter(namespace+"compact/output", nil)
    ldb.diskSizeGauge = metrics.NewRegisteredGauge(namespace+"disk/size", nil)
    ldb.diskReadMeter = metrics.NewRegisteredMeter(namespace+"disk/read", nil)
    ldb.diskWriteMeter = metrics.NewRegisteredMeter(namespace+"disk/write", nil)
    ldb.writeDelayMeter = metrics.NewRegisteredMeter(namespace+"compact/writedelay/duration", nil)
    ldb.writeDelayNMeter = metrics.NewRegisteredMeter(namespace+"compact/writedelay/counter", nil)

    ldb.onClose = close
    ldb.onDrop = drop

    // Start up the metrics gathering and return
    go ldb.meter(metricsGatheringInterval)
    return ldb, nil
}

// Close stops the metrics collection, flushes any pending data to disk and closes
// all io accesses to the underlying key-value store.
func (db *Database) Close() error {
    db.quitLock.Lock()
    defer db.quitLock.Unlock()

    if db.db == nil {
        panic("already closed")
    }

    if db.quitChan != nil {
        errc := make(chan error)
        db.quitChan <- errc
        if err := <-errc; err != nil {
            db.log.Error("Metrics collection failed", "err", err)
        }
        db.quitChan = nil
    }

    ldb := db.db
    db.db = nil

    if db.onClose != nil {
        if err := db.onClose(); err != nil {
            return err
        }
        db.onClose = nil
    }
    if err := ldb.Close(); err != nil {
        return err
    }
    return nil
}

// Drop whole database.
func (db *Database) Drop() {
    if db.db != nil {
        panic("Close database first!")
    }
    if db.onDrop != nil {
        db.onDrop()
    }
}

// Has retrieves if a key is present in the key-value store.
func (db *Database) Has(key []byte) (bool, error) {
    return db.db.Has(key, nil)
}

// Get retrieves the given key if it's present in the key-value store.
func (db *Database) Get(key []byte) ([]byte, error) {
    dat, err := db.db.Get(key, nil)
    if err != nil && err == leveldb.ErrNotFound {
        return nil, nil
    }
    return dat, err
}

// Put inserts the given value into the key-value store.
func (db *Database) Put(key []byte, value []byte) error {
    return db.db.Put(key, value, nil)
}

// Delete removes the key from the key-value store.
func (db *Database) Delete(key []byte) error {
    return db.db.Delete(key, nil)
}

// NewBatch creates a write-only key-value store that buffers changes to its host
// database until a final write is called.
func (db *Database) NewBatch() ethdb.Batch {
    return &batch{
        db: db.db,
        b:  new(leveldb.Batch),
    }
}

// NewIterator creates a binary-alphabetical iterator over a subset
// of database content with a particular key prefix, starting at a particular
// initial key (or after, if it does not exist).
func (db *Database) NewIterator(prefix []byte, start []byte) ethdb.Iterator {
    return db.db.NewIterator(bytesPrefixRange(prefix, start), nil)
}

// Stat returns a particular internal stat of the database.
func (db *Database) Stat(property string) (string, error) {
    return db.db.GetProperty(property)
}

// Compact flattens the underlying data store for the given key range. In essence,
// deleted and overwritten versions are discarded, and the data is rearranged to
// reduce the cost of operations needed to access them.
//
// A nil start is treated as a key before all keys in the data store; a nil limit
// is treated as a key after all keys in the data store. If both is nil then it
// will compact entire data store.
func (db *Database) Compact(start []byte, limit []byte) error {
    return db.db.CompactRange(util.Range{Start: start, Limit: limit})
}

// Path returns the path to the database directory.
func (db *Database) Path() string {
    return db.fn
}

// meter periodically retrieves internal leveldb counters and reports them to
// the metrics subsystem.
//
// This is how a LevelDB stats table looks like (currently):
//   Compactions
//    Level |   Tables   |    Size(MB)   |    Time(sec)  |    Read(MB)   |   Write(MB)
//   -------+------------+---------------+---------------+---------------+---------------
//      0   |          0 |       0.00000 |       1.27969 |       0.00000 |      12.31098
//      1   |         85 |     109.27913 |      28.09293 |     213.92493 |     214.26294
//      2   |        523 |    1000.37159 |       7.26059 |      66.86342 |      66.77884
//      3   |        570 |    1113.18458 |       0.00000 |       0.00000 |       0.00000
//
// This is how the write delay look like (currently):
// DelayN:5 Delay:406.604657ms Paused: false
//
// This is how the iostats look like (currently):
// Read(MB):3895.04860 Write(MB):3654.64712
func (db *Database) meter(refresh time.Duration) {
    // Create the counters to store current and previous compaction values
    compactions := make([][]float64, 2)
    for i := 0; i < 2; i++ {
        compactions[i] = make([]float64, 4)
    }
    // Create storage for iostats.
    var iostats [2]float64

    // Create storage and warning log tracer for write delay.
    var (
        delaystats      [2]int64
        lastWritePaused time.Time
    )

    var (
        errc chan error
        merr error
    )

    timer := time.NewTimer(refresh)
    defer timer.Stop()

    // Iterate ad infinitum and collect the stats
    for i := 1; errc == nil && merr == nil; i++ {
        // Retrieve the database stats
        stats, err := db.db.GetProperty("leveldb.stats")
        if err != nil {
            db.log.Error("Failed to read database stats", "err", err)
            merr = err
            continue
        }
        // Find the compaction table, skip the header
        lines := strings.Split(stats, "\n")
        for len(lines) > 0 && strings.TrimSpace(lines[0]) != "Compactions" {
            lines = lines[1:]
        }
        if len(lines) <= 3 {
            db.log.Error("Compaction leveldbTable not found")
            merr = errors.New("compaction leveldbTable not found")
            continue
        }
        lines = lines[3:]

        // Iterate over all the leveldbTable rows, and accumulate the entries
        for j := 0; j < len(compactions[i%2]); j++ {
            compactions[i%2][j] = 0
        }
        for _, line := range lines {
            parts := strings.Split(line, "|")
            if len(parts) != 6 {
                break
            }
            for idx, counter := range parts[2:] {
                value, err := strconv.ParseFloat(strings.TrimSpace(counter), 64)
                if err != nil {
                    db.log.Error("Compaction entry parsing failed", "err", err)
                    merr = err
                    continue
                }
                compactions[i%2][idx] += value
            }
        }
        // Update all the requested meters
        if db.diskSizeGauge != nil {
            db.diskSizeGauge.Update(int64(compactions[i%2][0] * 1024 * 1024))
        }
        if db.compTimeMeter != nil {
            db.compTimeMeter.Mark(int64((compactions[i%2][1] - compactions[(i-1)%2][1]) * 1000 * 1000 * 1000))
        }
        if db.compReadMeter != nil {
            db.compReadMeter.Mark(int64((compactions[i%2][2] - compactions[(i-1)%2][2]) * 1024 * 1024))
        }
        if db.compWriteMeter != nil {
            db.compWriteMeter.Mark(int64((compactions[i%2][3] - compactions[(i-1)%2][3]) * 1024 * 1024))
        }
        // Retrieve the write delay statistic
        writedelay, err := db.db.GetProperty("leveldb.writedelay")
        if err != nil {
            db.log.Error("Failed to read database write delay statistic", "err", err)
            merr = err
            continue
        }
        var (
            delayN        int64
            delayDuration string
            duration      time.Duration
            paused        bool
        )
        if n, err := fmt.Sscanf(writedelay, "DelayN:%d Delay:%s Paused:%t", &delayN, &delayDuration, &paused); n != 3 || err != nil {
            db.log.Error("Write delay statistic not found")
            merr = err
            continue
        }
        duration, err = time.ParseDuration(delayDuration)
        if err != nil {
            db.log.Error("Failed to parse delay duration", "err", err)
            merr = err
            continue
        }
        if db.writeDelayNMeter != nil {
            db.writeDelayNMeter.Mark(delayN - delaystats[0])
        }
        if db.writeDelayMeter != nil {
            db.writeDelayMeter.Mark(duration.Nanoseconds() - delaystats[1])
        }
        // If a warning that db is performing compaction has been displayed, any subsequent
        // warnings will be withheld for one minute not to overwhelm the user.
        if paused && delayN-delaystats[0] == 0 && duration.Nanoseconds()-delaystats[1] == 0 &&
            time.Now().After(lastWritePaused.Add(degradationWarnInterval)) {
            db.log.Warn("Database compacting, degraded performance")
            lastWritePaused = time.Now()
        }
        delaystats[0], delaystats[1] = delayN, duration.Nanoseconds()

        // Retrieve the database iostats.
        ioStats, err := db.db.GetProperty("leveldb.iostats")
        if err != nil {
            db.log.Error("Failed to read database iostats", "err", err)
            merr = err
            continue
        }
        var nRead, nWrite float64
        parts := strings.Split(ioStats, " ")
        if len(parts) < 2 {
            db.log.Error("Bad syntax of ioStats", "ioStats", ioStats)
            merr = fmt.Errorf("bad syntax of ioStats %s", ioStats)
            continue
        }
        if n, err := fmt.Sscanf(parts[0], "Read(MB):%f", &nRead); n != 1 || err != nil {
            db.log.Error("Bad syntax of read entry", "entry", parts[0])
            merr = err
            continue
        }
        if n, err := fmt.Sscanf(parts[1], "Write(MB):%f", &nWrite); n != 1 || err != nil {
            db.log.Error("Bad syntax of write entry", "entry", parts[1])
            merr = err
            continue
        }
        if db.diskReadMeter != nil {
            db.diskReadMeter.Mark(int64((nRead - iostats[0]) * 1024 * 1024))
        }
        if db.diskWriteMeter != nil {
            db.diskWriteMeter.Mark(int64((nWrite - iostats[1]) * 1024 * 1024))
        }
        iostats[0], iostats[1] = nRead, nWrite

        // Sleep a bit, then repeat the stats collection
        select {
        case errc = <-db.quitChan:
            // Quit requesting, stop hammering the database
        case <-timer.C:
            timer.Reset(refresh)
            // Timeout, gather a new set of stats
        }
    }

    if errc == nil {
        errc = <-db.quitChan
    }
    errc <- merr
}

// batch is a write-only leveldb batch that commits changes to its host database
// when Write is called. A batch cannot be used concurrently.
type batch struct {
    db   *leveldb.DB
    b    *leveldb.Batch
    size int
}

// Put inserts the given value into the batch for later committing.
func (b *batch) Put(key, value []byte) error {
    b.b.Put(key, value)
    b.size += len(value)
    return nil
}

// Delete inserts the a key removal into the batch for later committing.
func (b *batch) Delete(key []byte) error {
    b.b.Delete(key)
    b.size++
    return nil
}

// ValueSize retrieves the amount of data queued up for writing.
func (b *batch) ValueSize() int {
    return b.size
}

// Write flushes any accumulated data to disk.
func (b *batch) Write() error {
    return b.db.Write(b.b, nil)
}

// Reset resets the batch for reuse.
func (b *batch) Reset() {
    b.b.Reset()
    b.size = 0
}

// Replay replays the batch contents.
func (b *batch) Replay(w ethdb.KeyValueWriter) error {
    return b.b.Replay(&replayer{writer: w})
}

// replayer is a small wrapper to implement the correct replay methods.
type replayer struct {
    writer  ethdb.KeyValueWriter
    failure error
}

// Put inserts the given value into the key-value data store.
func (r *replayer) Put(key, value []byte) {
    // If the replay already failed, stop executing ops
    if r.failure != nil {
        return
    }
    r.failure = r.writer.Put(key, value)
}

// Delete removes the key from the key-value data store.
func (r *replayer) Delete(key []byte) {
    // If the replay already failed, stop executing ops
    if r.failure != nil {
        return
    }
    r.failure = r.writer.Delete(key)
}

// bytesPrefixRange returns key range that satisfy
// - the given prefix, and
// - the given seek position
func bytesPrefixRange(prefix, start []byte) *util.Range {
    r := util.BytesPrefix(prefix)
    r.Start = append(r.Start, start...)
    return r
}