Godley/MuseParse

View on GitHub
MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py

Summary

Maintainability
F
6 days
Test Coverage

Function UpdateArpeggiates has a Cognitive Complexity of 30 (exceeds 5 allowed). Consider refactoring.
Open

    def UpdateArpeggiates(self, type="start"):
        '''
        method which searches for all arpeggiates and updates the top one of each chord to be a start,
        and the bottom one to be a stop ready for lilypond output
        :param type:
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function AttachDirection has a Cognitive Complexity of 29 (exceeds 5 allowed). Consider refactoring.
Open

    def AttachDirection(self, item):
        if item.GetItem().__class__.__name__ == OctaveShift.__name__:
            self.shift = True
        if len(self.children) == 0:
            self.AttachExpression(OtherNodes.ExpressionNode())
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 4 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Cyclomatic complexity is too high in method AttachNote. (19)
Open

    def AttachNote(self, new_note):

        if len(self.children) > 0:
            firstchild = self.GetChild(0)
            if isinstance(firstchild, NoteNode):

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Function toLily has a Cognitive Complexity of 26 (exceeds 5 allowed). Consider refactoring.
Open

    def toLily(self):
        '''
        Method which converts the object instance, its attributes and children to a string of lilypond code

        :return: str of lilypond code
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 3 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Cyclomatic complexity is too high in method toLily. (15)
Open

    def toLily(self):
        '''
        Method which converts the object instance, its attributes and children to a string of lilypond code

        :return: str of lilypond code

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Cyclomatic complexity is too high in method AttachDirection. (13)
Open

    def AttachDirection(self, item):
        if item.GetItem().__class__.__name__ == OctaveShift.__name__:
            self.shift = True
        if len(self.children) == 0:
            self.AttachExpression(OtherNodes.ExpressionNode())

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Cyclomatic complexity is too high in method UpdateArpeggiates. (12)
Open

    def UpdateArpeggiates(self, type="start"):
        '''
        method which searches for all arpeggiates and updates the top one of each chord to be a start,
        and the bottom one to be a stop ready for lilypond output
        :param type:

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Cyclomatic complexity is too high in method Find. (9)
Open

    def Find(self, node_type, item_type):
        '''
        method for finding specific types of notation from nodes.
        will currently return the first one it encounters because this method's only really intended
        for some types of notation for which the exact value doesn't really

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Cyclomatic complexity is too high in class NoteNode. (7)
Open

class NoteNode(Node):

    """Node which encapsulates the Note class.


Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Cyclomatic complexity is too high in method AttachExpression. (7)
Open

    def AttachExpression(self, new_node):
        if len(self.children) > 0:
            if isinstance(self.GetChild(0), OtherNodes.DirectionNode):
                self.PositionChild(0, new_node)
            if isinstance(self.GetChild(0), NoteNode):

Cyclomatic Complexity

Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

Construct Effect on CC Reasoning
if +1 An if statement is a single decision.
elif +1 The elif statement adds another decision.
else +0 The else statement does not cause a new decision. The decision is at the if.
for +1 There is a decision at the start of the loop.
while +1 There is a decision at the while statement.
except +1 Each except branch adds a new conditional path of execution.
finally +0 The finally block is unconditionally executed.
with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
assert +1 The assert statement internally roughly equals a conditional statement.
Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

Source: http://radon.readthedocs.org/en/latest/intro.html

Function Find has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring.
Open

    def Find(self, node_type, item_type):
        '''
        method for finding specific types of notation from nodes.
        will currently return the first one it encounters because this method's only really intended
        for some types of notation for which the exact value doesn't really
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function AttachExpression has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring.
Open

    def AttachExpression(self, new_node):
        if len(self.children) > 0:
            if isinstance(self.GetChild(0), OtherNodes.DirectionNode):
                self.PositionChild(0, new_node)
            if isinstance(self.GetChild(0), NoteNode):
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function AttachNote has a Cognitive Complexity of 10 (exceeds 5 allowed). Consider refactoring.
Open

    def AttachNote(self, new_note):

        if len(self.children) > 0:
            firstchild = self.GetChild(0)
            if isinstance(firstchild, NoteNode):
Severity: Minor
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

                if not isinstance(
                        new_note.GetItem(),
                        int) and not isinstance(
                        new_note.GetItem(),
                        str):
Severity: Major
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py and 1 other location - About 1 day to fix
MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py on lines 211..223

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 192.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

            if not isinstance(
                    new_note.GetItem(),
                    int) and not isinstance(
                    new_note.GetItem(),
                    str):
Severity: Major
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py and 1 other location - About 1 day to fix
MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py on lines 196..208

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 192.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        if node_type == OtherNodes.DirectionNode:
            child = self.GetChild(len(self.children) - 1)
            while child is not None and not isinstance(
                    child.GetItem(),
                    item_type):
Severity: Major
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py and 1 other location - About 5 hrs to fix
MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py on lines 64..71

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 97.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        if node_type == OtherNodes.ExpressionNode:
            child = self.GetChild(len(self.children) - 2)
            while child is not None and not isinstance(
                    child.GetItem(),
                    item_type):
Severity: Major
Found in MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py and 1 other location - About 5 hrs to fix
MuseParse/classes/ObjectHierarchy/TreeClasses/NoteNode.py on lines 56..63

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 97.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Line too long (80 > 79 characters)
Open

from MuseParse.classes.ObjectHierarchy.ItemClasses.Directions import OctaveShift

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (96 > 79 characters)
Open

        - left: Expression (dynamic or other expressive thing that has to be attached to a note)

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (83 > 79 characters)
Open

from MuseParse.classes.ObjectHierarchy.TreeClasses.OtherNodes import ExpressionNode

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (83 > 79 characters)
Open

    In order to maintain lilypond's output flow, Notes have a specific child order:

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (91 > 79 characters)
Open

from MuseParse.classes.ObjectHierarchy.ItemClasses.Note import Arpeggiate, NonArpeggiate, \

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (107 > 79 characters)
Open

        Method which converts the object instance, its attributes and children to a string of lilypond code

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (102 > 79 characters)
Open

    Optional inputs are minimal on this one as info about the note itself is stored in the Note class.

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (85 > 79 characters)
Open

from MuseParse.classes.ObjectHierarchy.TreeClasses.BaseTree import Node, FindPosition

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (100 > 79 characters)
Open

        will currently return the first one it encounters because this method's only really intended

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (102 > 79 characters)
Open

        method which searches for all arpeggiates and updates the top one of each chord to be a start,

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

Line too long (107 > 79 characters)
Open

        Method which converts the object instance, its attributes and children to a string of lilypond code

Limit all lines to a maximum of 79 characters.

There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side.  The default wrapping on such
devices looks ugly.  Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.

Reports error E501.

There are no issues that match your filters.

Category
Status