documents/tutorials/opacity_exomol.ipynb
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing CO cross section using ExoMol (opacity calculator = LPF)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial demonstrates how to compute the opacity of CO using ExoMol step by step."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:24.877890Z",
"iopub.status.busy": "2022-10-20T05:43:24.877569Z",
"iopub.status.idle": "2022-10-20T05:43:27.453016Z",
"shell.execute_reply": "2022-10-20T05:43:27.452679Z"
}
},
"outputs": [],
"source": [
"from exojax.spec.lpf import auto_xsection\n",
"from exojax.spec import SijT, doppler_sigma, gamma_natural\n",
"from exojax.spec.exomol import gamma_exomol\n",
"from exojax.spec import api\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use('bmh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First of all, set a wavenumber bin in the unit of wavenumber (cm-1).\n",
"Here we set the wavenumber range as $1000 \\le \\nu \\le 10000$ (1/cm) with the resolution of 0.01 (1/cm). \n",
"\n",
"We call moldb instance with the path of exomole files."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:27.455618Z",
"iopub.status.busy": "2022-10-20T05:43:27.455331Z",
"iopub.status.idle": "2022-10-20T05:43:27.884307Z",
"shell.execute_reply": "2022-10-20T05:43:27.884541Z"
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background atmosphere: H2\n",
"Reading CO/12C-16O/Li2015/12C-16O__Li2015.trans.bz2\n",
".broad is used.\n",
"Broadening code level= a0\n",
"default broadening parameters are used for 71 J lower states in 152 states\n"
]
}
],
"source": [
"# Setting wavenumber bins and loading HITRAN database\n",
"nus=np.linspace(1000.0,10000.0,900000,dtype=np.float64) #cm-1\n",
"emf='CO/12C-16O/Li2015'\n",
"mdbCO=api.MdbExomol(emf,nus,gpu_transfer=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define molecular weight of CO ($\\sim 12+16=28$), temperature (K), and pressure (bar).\n",
"Also, we here assume the 100 % CO atmosphere, i.e. the partial pressure = pressure. "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:27.886790Z",
"iopub.status.busy": "2022-10-20T05:43:27.886499Z",
"iopub.status.idle": "2022-10-20T05:43:27.888012Z",
"shell.execute_reply": "2022-10-20T05:43:27.887771Z"
}
},
"outputs": [],
"source": [
"Mmol=28.010446441149536 # molecular weight\n",
"Tfix=1000.0 # we assume T=1000K\n",
"Pfix=1.e-3 # we compute P=1.e-3 bar"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"partition function ratio $q(T)$ is defined by \n",
"\n",
"$q(T) = Q(T)/Q(T_{ref})$; $T_{ref}$=296 K\n",
"\n",
"Here, we use the partition function from the interpolation of partition function"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:27.889814Z",
"iopub.status.busy": "2022-10-20T05:43:27.889103Z",
"iopub.status.idle": "2022-10-20T05:43:27.921339Z",
"shell.execute_reply": "2022-10-20T05:43:27.921078Z"
}
},
"outputs": [],
"source": [
"qt=mdbCO.qr_interp(Tfix)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us compute the line strength S(T) at temperature of Tfix.\n",
"\n",
"$S (T;s_0,\\nu_0,E_l,q(T)) = S_0 \\frac{Q(T_{ref})}{Q(T)} \\frac{e^{- h c E_l /k_B T}}{e^{- h c E_l /k_B T_{ref}}} \\frac{1- e^{- h c \\nu /k_B T}}{1-e^{- h c \\nu /k_B T_{ref}}}= q_r(T)^{-1} e^{ s_0 - c_2 E_l (T^{-1} - T_{ref}^{-1})} \\frac{1- e^{- c_2 \\nu_0/ T}}{1-e^{- c_2 \\nu_0/T_{ref}}}$\n",
"\n",
"$s_0=\\log_{e} S_0$ : logsij0\n",
"\n",
"$\\nu_0$: nu_lines\n",
"\n",
"$E_l$ : elower\n",
"\n",
"Why the input is $s_0 = \\log_{e} S_0$ instead of $S_0$ in SijT? This is because the direct value of $S_0$ is quite small and we need to use float32 for jax. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:27.937782Z",
"iopub.status.busy": "2022-10-20T05:43:27.937484Z",
"iopub.status.idle": "2022-10-20T05:43:28.005626Z",
"shell.execute_reply": "2022-10-20T05:43:28.005300Z"
}
},
"outputs": [],
"source": [
"Sij=SijT(Tfix,mdbCO.logsij0,mdbCO.nu_lines,mdbCO.elower,qt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, compute the Lorentz gamma factor (pressure+natural broadening)\n",
"\n",
"$\\gamma_L = \\gamma^p_L + \\gamma^n_L$\n",
"\n",
"where the pressure broadning \n",
"\n",
"$\\gamma^p_L = \\alpha_{ref} ( T/T_{ref} )^{-n_{texp}} ( P/P_{ref}), $\n",
"\n",
"and the natural broadening\n",
"\n",
"$\\gamma^n_L = \\frac{A}{4 \\pi c}$"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.010829Z",
"iopub.status.busy": "2022-10-20T05:43:28.010535Z",
"iopub.status.idle": "2022-10-20T05:43:28.159513Z",
"shell.execute_reply": "2022-10-20T05:43:28.159229Z"
}
},
"outputs": [],
"source": [
"gammaL = gamma_exomol(Pfix,Tfix,mdbCO.n_Texp,mdbCO.alpha_ref)\\\n",
"+ gamma_natural(mdbCO.A) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.161962Z",
"iopub.status.busy": "2022-10-20T05:43:28.161626Z",
"iopub.status.idle": "2022-10-20T05:43:28.165916Z",
"shell.execute_reply": "2022-10-20T05:43:28.165665Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([3.1183732e-05, 3.8084123e-05, 3.8084123e-05, ...,\n",
" 3.8084123e-05, 3.1183732e-05, 3.1455678e-05], dtype=float32)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gamma_exomol(Pfix,Tfix,mdbCO.n_Texp,mdbCO.alpha_ref)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.175885Z",
"iopub.status.busy": "2022-10-20T05:43:28.170013Z",
"iopub.status.idle": "2022-10-20T05:43:28.782155Z",
"shell.execute_reply": "2022-10-20T05:43:28.781858Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7efbb8248ca0>]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD1CAYAAACyaJl6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxRklEQVR4nO2de3Ak1Xnofx/SjjRopUGPsdbs4uXhxXuJnYBNAb6kHBcKsDi+rLMmGEIRqGgd38pSdmzfJGxclzgkFds3ruCkQpxcL9jY1wEc4pC1Lw4QDPEtZ00AgTEPYxawstplpNFjR48d7WiH7/4xLaW30YweZ0b94T6/qil1n3O653eOuvubPn26W1QVj8fj8SSbE+IW8Hg8Hk/8+GDg8Xg8Hh8MPB6Px+ODgcfj8XjwwcDj8Xg8+GDg8Xg8HqA5boHV8sgjj2hLS8uqlj127BjNzXar7v3cse7o/dyx7mjR78iRI6N9fX3ZxfJsma6AlpYWtm7duqplJycn6ejoqLNR/fB+7lh39H7uWHe06DcwMDBYLS9x3USX7HmSK77xEpfseTJulaoUi8W4FWpi3Q/sO3o/d6w7WveLkqhgEA0AVgPC7Oxs3Ao1se4H9h29nzvWHa37RUlUMHijsGHDhrgVamLdD+w7ej93rDta94vig4FBcrlc3Ao1se4H9h29nzvWHa37RUlUMHhg5zk1563Q2toat0JNrPuBfUfv5451R+t+Ud6wo4lWywM7zzF5lT9MOp2OW6Em1v3AvqP3c8e6o3W/KIk6M5hnYmIiboWaeD93rDt6P3esO1r3i5K4MwOA7u7u40YSWesu6u7ujluhJtb9wL6j93PHuqN1vyiJPDPYcdeLx83XY4jpJXueXPgsNr8SpqamnH0aiXU/sO/o/dyx7mjdL0oig8FirDYgLHbAd72foVQqrcplrbDuB/YdvZ871h2t+0VpSDAQkW0i8oKI7BeRG6uUuVJEnhORZ0Xk70LpZRF5KvjsbYRfNVb6S75RN61ZH59s3Q/sO3o/d6w7WveLUvdrBiLSBNwKXAwMAY+JyF5VfS5UZguwG7hQVSdE5E2hVRRV9ex6e4X50sVdfPjB8ar58wf5el5LiF6jsHr3s2dtsXa9ap5cLsfmzZvj1qiJdUfrflEacWZwHrBfVV9W1RJwF7A9UubDwK2qOgGgqiMN8KhKOp1e1k7YqAO2DwSeeaxuC2+EYZHWHa37RWnEaKKNwIHQ/BBwfqTMmQAi8n2gCfi0qv5zkNcqIo8Dx4DPquq9i33JyMgI/f39NDc3Uy6X2bFjB7t27SKXy9HW1kZTUxOTk5Nks1nGx8dRVbLZLMPDw4gIY2NjS54hABw9epRcLse6devIZDKMjo6SyWS48p5XVtwwHs9iDA0N0dXVRT6fp6Ojg3K5zMzMDBs2bFh02yuVShSLxYX8VCpFe3s7Y2NjdHZ2UiwWmZ2dXchvbW0lnU4zMTFBd3c3U1NTlEqlhfx0Ok0qlaJQKNDT00OhUGBqaopMJrOs/Wn9+vUATE9P09vbSz6fR0QaXqdyuczg4OCy6zQ3N7eQvxZ1OnLkCIODgw39P62mTtUQVa3rhi0iVwDbVHVnMH8tcL6q3hAq821gDrgS2AR8D3iHqh4WkY2qelBETge+C/Sp6kvR79m3b5+u9hHWg4ODrzt9q/YLbbEziMXK+q4fz2qx2FW02D5iDeuOFv0GBgae6OvrO3exvEZ0Ex0ETgnNbwrSwgwBe1V1TlVfAX4CbAFQ1YPB35eBR4C67yk9PT2vS3tg5zmLPq7CZYhoNSzu/J54sLotLLaPWMO6o3W/KI3oJnoM2CIip1EJAlcBvx4pcy9wNfBlEemh0m30soh0AkdU9WiQfiHwv+otWCgUaGtrWzRvfuesNmS01s4bPTuodlax1AXqQ4cOcfLJJ9euRIxY9wP7jtb9au0jVrDuaN0vSt2DgaoeE5EbgPupXA+4XVWfFZGbgcdVdW+Qd4mIPAeUgd9V1TER+a/A34rIa1TOWj4bHoVUL+bm5mrm1zoLqNZFtNj0UstWCy5L+cWNdT+w7+j93LHuaN0vSkMeR6Gq9wH3RdJuCk0r8IngEy7zb8A7GuEUpp7jfxtxmm99fLJ1P7Dv6P3cse5o3S9KIu9Atv6cce/njnVH7+eOdUfrflESGQyW6sdr1EW95b5PwXo/o3U/sO/o/dyx7mjdL0oin1ra1NS0ZJnogXqpawXLZTnLLMcvTqz7gX1H7+eOdUfrflESGQwmJyfp7Oxc0TJrOQRwNX5riXU/sO/o/dyx7mjdL0oiu4my2WzcCjXxfu5Yd/R+7lh3tO4XJZHBYHy89iMo4sb7uWPd0fu5Y93Rul+URAaDej+Co954P3esO3o/d6w7WveLkshgYP30zfu5Y93R+7lj3dG6X5REBoPh4eG4FWri/dyx7uj93LHuaN0vSiKDwVKPco0b7+eOdUfv5451R+t+URIZDDwej8dzPIkMBtPT03Er1MT7uWPd0fu5Y93Rul+URAaD3t7euBVq4v3cse7o/dyx7mjdL0oig0E+n49boSbezx3rjt7PHeuO1v2iJDIYiEjcCjXxfu5Yd/R+7lh3tO4XJZHBoKurK26Fmng/d6w7ej93rDta94uSyGBg/fTN+7lj3dH7uWPd0bpflIYFAxHZJiIviMh+EbmxSpkrReQ5EXlWRP4ulH6diLwYfK6rt1tHR0e9V1lXvJ871h29nzvWHa37RWnII6xFpAm4FbgYGAIeE5G94fcZi8gWYDdwoapOiMibgvQu4A+BcwEFngiWnaiXX7lcrteqGoL3c8e6o/dzx7qjdb8ojTozOA/Yr6ovq2oJuAvYHinzYeDW+YO8qo4E6ZcCD6rqeJD3ILCtnnIzMzP1XF3d8X7uWHf0fu5Yd7TuF6VRwWAjcCA0PxSkhTkTOFNEvi8iPxCRbStY1gnrL6r2fu5Yd/R+7lh3tO4XJc43nTUDW4D3ApuA74nIO5a78MjICP39/TQ3N1Mul9mxYwe7du0il8vR1tZGU1MTk5OTZLNZxsfHUVWy2SzDw8MUi0Wy2SzT09P09vaSz+cREbq6usjn83R0dFAul5mZmWHDhg3kcjnWrVtHJpNhdHSUTCZDqVSiWCwu5KdSKdrb2xkbG6Ozs5Niscjs7OxCfmtrK+l0momJCbq7u5mamqJUKi3kp9NpUqkUhUKBUqlEW1sbc3NzC/lL1Wn+OShrUadyuUxTU9OK6tTT00OhUFizOr300ku85S1vaej/yaVOBw8e5MwzzzS37c3XaXR0lLe97W3mtr1wnQqFAi0tLea2vfk6HTp0iLa2NnPbXjWkEc/cFpF3A59W1UuD+d0AqvqZUJm/AR5V1S8H8w8BNwJvBd6rqh8J0v8WeERV7wx/x759+3Tr1q2r8jt06BAnn3zyqpZdC7yfO9YdvZ871h0t+g0MDDzR19d37mJ5jeomegzYIiKniUgKuArYGylzL5WzAkSkh0q30cvA/cAlItIpIp3AJUFa3chkMvVcXd3xfu5Yd/R+7lh3tO4XpSHBQFWPATdQOYg/D3xDVZ8VkZtF5PKg2P3AmIg8BzwM/K6qjqnqOPDHVALKY8DNQVrdGB0drefq6o73c8e6o/dzx7qjdb8oDbtmoKr3AfdF0m4KTSvwieATXfZ24PZGuVmP2N7PHeuO3s8d647W/aIk8g7kUqkUt0JNvJ871h29nzvWHa37RUlkMCgWi3Er1MT7uWPd0fu5Y93Rul+URAYD6+N/vZ871h29nzvWHa37RUlkMMjlcnEr1MT7uWPd0fu5Y93Rul+URAaDVCoVt0JNvJ871h29nzvWHa37RUlkMGhvb49boSbezx3rjt7PHeuO1v2iJDIYjI2Nxa1QE+/njnVH7+eOdUfrflESGQw6OzvjVqiJ93PHuqP3c8e6o3W/KIkMBtaHfHk/d6w7ej93rDta94uSyGAwOzsbt0JNvJ871h29nzvWHa37RUlkMLA+/tf7uWPd0fu5Y93Rul+URAYD6+N/vZ871h29nzvWHa37RUlkMGhtbY1boSbezx3rjt7PHeuO1v2iJDIYpNPpuBVq4v3cse7o/dyx7mjdL0oig8HExETcCjXxfu5Yd/R+7lh3tO4XJZHBoLu7O26Fmng/d6w7ej93rDta94uSyGAwNTUVt0JNvJ871h29nzvWHa37RWlIMBCRbSLygojsF5EbF8m/XkTyIvJU8NkZyiuH0qPvTa4L1l864f3cse7o/dyx7mjdL0rdX3spIk3ArcDFwBDwmIjsVdXnIkXvVtUbFllFUVXPrrdXGOvjf72fO9YdvZ871h2t+0VpxJnBecB+VX1ZVUvAXcD2BnzPqrE+/tf7uWPd0fu5Y93Rul+URgSDjcCB0PxQkBblgyLytIjcIyKnhNJbReRxEfmBiHygAX7mh3x5P3esO3o/d6w7WveLUvduomXyLeBOVT0qIh8B7gAuCvI2q+pBETkd+K6I/EhVX4quYGRkhP7+fpqbmymXy+zYsYNdu3aRy+Voa2ujqamJyclJstks4+PjqCrZbJbh4WFEhLGxMaanp+nt7SWfzyMidHV1kc/n6ejooFwuMzMzw4YNG8jlcqxbt45MJsPo6CiZTIZSqUSxWFzIT6VStLe3MzY2RmdnJ8VikdnZ2YX81tZW0uk0ExMTdHd3MzU1RalUWshPp9OkUikKhQItLS0cOnSIubm5hfyl6rR+/XqANanTiSeeyODg4Irq1NPTQ6FQWLM6TUxMkEqlGvp/cqnTxMQEHR0d5ra9+TpNTU2RyWTMbXvhOpXLZQYHB81te/N1OnLkCIODg+a2vWqIqjof2Y9boci7gU+r6qXB/G4AVf1MlfJNwLiqZhbJ+wrwbVW9J5q3b98+3bp166ocBwcH2bx586qWXQu8nzvWHb2fO9YdLfoNDAw80dfXd+5ieY3oJnoM2CIip4lICrgKOG5UkIi8OTR7OfB8kN4pIi3BdA9wIRC98OxMT09PvVdZV7yfO9YdvZ871h2t+0WpezBQ1WPADcD9VA7y31DVZ0XkZhG5PCj2URF5VkR+CHwUuD5I/y/A40H6w8BnFxmF5EyhUKj3KuuK93PHuqP3c8e6o3W/KA25ZqCq9wH3RdJuCk3vBnYvsty/Ae9ohFOYubm5Rn+FE97PHeuO3s8d647W/aIk8g5k6+N/vZ871h29nzvWHa37RUlkMLA+/tf7uWPd0fu5Y93Rul+URAaDtra2uBVq4v3cse7o/dyx7mjdL0oig0FTU1PcCjXxfu5Yd/R+7lh3tO4XJZHBYHJyMm6Fmng/d6w7ej93rDta94uSyGCQzWbjVqiJ93PHuqP3c8e6o3W/KIkMBuPj43Er1MT7uWPd0fu5Y93Rul+URAaDej+Co954P3esO3o/d6w7WveLkshgYP30zfu5Y93R+7lj3dG6X5REBoPh4eG4FWri/dyx7uj93LHuaN0vSiKDwVKPco0b7+eOdUfv5451R+t+URIZDDwej8dzPIkMBtPT03Er1MT7uWPd0fu5Y93Rul+URAaD3t7euBVq4v3cse7o/dyx7mjdL0oig0E+n49boSbezx3rjt7PHeuO1v2iJDIYiEjcCjXxfu5Yd/R+7lh3tO4XJZHBoKurK26Fmng/d6w7ej93rDta94uSyGBg/fTN+7lj3dH7uWPd0bpflIYFAxHZJiIviMh+EblxkfzrRSQvIk8Fn52hvOtE5MXgc1293To6Ouq9yrri/dyx7uj93LHuaN0vSkPegSwiTcCtwMXAEPCYiOxd5OX2d6vqDZFlu4A/BM4FFHgiWHaiXn7lcrleq2oI3s8d647lcplL9jwZt8YS/DRugWXw07gFluCnDVvzAzvPqev6GnVmcB6wX1VfVtUScBewfZnLXgo8qKrjQQB4ENhWT7mZmZl6rq7ueD93rDv++r0H4lbwvMGp94+JhpwZABuB8NY+BJy/SLkPish7gJ8AH1fVA1WW3RhdcGRkhP7+fpqbmymXy+zYsYNdu3aRy+Voa2ujqamJyclJstks4+PjqCrZbJbh4WFaW1sZGxtjenqa3t5e8vk8IkJXVxf5fJ6Ojg7K5TIzMzNs2LCBXC7HunXryGQyjI6OkslkKJVKFIvFhfxUKkV7eztjY2N0dnZSLBaZnZ1dyG9tbSWdTjMxMUF3dzdTU1OUSqWF/HQ6TSqVolAo0NHRwaFDh5ibm1vIX6pO87e+r0Wdurq6GBwcXFGdenp6KBQKa1ancrnM4cOHG/p/cqmTx1MPBgcH67btSSMesyoiVwDbVHVnMH8tcH64S0hEuoFpVT0qIh8BPqSqF4nI/wBaVfVPgnL/Eyiq6ufD37Fv3z7dunXrqvwGBwfZvHnzqpZdC7yfO9Yd7XcRed4IrLSraGBg4Im+vr5zF8trVDfRQeCU0PymIG0BVR1T1aPB7B7gXctd1pV77723nqurO97PHeuOvzLzvbgVavPaa3EbLI11xwb71fuaQaPODJqpdP30UTmQPwb8uqo+GyrzZlV9NZj+VeD3VfWC4ALyE8A7g6IDwLtU9bjXBrmcGfzSL/0S//qv/7qqZdcC7+eOdUfv5451R4t+tc4MGnLNQFWPicgNwP1AE3C7qj4rIjcDj6vqXuCjInI5cAwYB64Plh0XkT+mEkAAbo4GAleOHTtWz9XVHe/njnVH7+eOdUfrflEacmawFjz00EN5YHA1y46Pj/d0dXWN1lmpbng/d6w7ej93rDsa9dvc19e36CvY3rDBwOPxeDz1I5GPo/B4PB7P8fhg4PF4PJ5kBYOlnpcUByJyiog8LCLPicizIvKxIL1LRB4Mns/0oIh0xuzZJCJPisi3g/nTROTRoC3vFpFUjG4nicg9IvJjEXleRN5tqf1E5OPB//YZEblTRFrjbj8RuV1ERkTkmVDaom0mFf4ycH1aRN5Zfc0N9fuz4H/8tIj8o4icFMrbHfi9ICKXNtqvmmMo75MioiLSE8yveRuulMQEg9Dzki4DzgKuFpGz4rUCKqOpPqmqZwEXALsCrxuBh1R1C/BQMB8nHwOeD81/DrhFVd8KTAD9sVhV+Avgn1V1K/ALVDxNtJ+IbAQ+Cpyrqm+nMrruKuJvv6/w+se8VGuzy4Atwee3gC/G5Pcg8HZV/XkqQ9d3AwT7y1XAzwXL/HWwv8fhiIicAlwC/EcoOY42XBGJCQa4PS+pYajqq6o6EExPUTmQbaTidkdQ7A7gA7EIAiKyCfgVKjcHIiICXATcExSJzU9EMsB7gNsAVLWkqocx1H5UhnCng/tvTgReJeb2U9XvURnSHaZam20HvqoVfgCcJCJvXms/VX1AVefHa/6Ayg2p8353qepRVX0F2E9lf28oVdoQ4Bbg96g8aHOeNW/DlZKkYLCsZx7FiYicCpwDPAr0zt+UB+SAOF+o+gUqG/f8LZXdwOHQjhlnW54G5IEvB91Ye0SkDSPtp6oHgc9T+ZX4KlCgclOllfYLU63NLO47vwl8J5g24yci24GDqvrDSJYZx2okKRiYRkTWA/8A/I6qTobztDL+N5YxwCLyfmBEVZ+I4/uXQTOVu9W/qKrnADNEuoRibr9OKr8KTwNOBtqo81N4G0GcbbYUIvIpKt2rX4/bJYyInAj8AXBT3C6rIUnBoOHPPFotIrKOSiD4uqp+M0genj+NDP6OxKR3IXC5iPyUStfaRVT66E8Kuj0g3rYcAoZU9dFg/h4qwcFK+/0y8Iqq5lV1DvgmlTa10n5hqrWZmX1HRK4H3g9co/95k5QVvzOoBP0fBvvLJmBARDZgx7EqSQoGjwFbglEcKSoXnPbG7DTf/34b8Lyq/nkoay8w/5a364B/Wms3AFXdraqbVPVUKm32XVW9BngYuMKAXw44ICJvC5L6gOcw0n5UuocuEJETg//1vJ+J9otQrc32Ar8RjIi5ACiEupPWDBHZRqW78nJVPRLK2gtcJSItInIalYu0/77Wfqr6I1V9k6qeGuwvQ8A7g23URBvWRFUT8wHeR2UUwkvAp+L2CZx+kcrp+NPAU8HnfVT65R8CXgT+Begy4Ppe4NvB9OlUdrj9wN8DLTF6nQ08HrThvUCnpfYD/gj4MfAM8DWgJe72A+6kcg1jjspBq79amwFCZSTeS8CPqIyMisNvP5V+9/n95G9C5T8V+L0AXBZXG0byfwr0xNWGK/34x1F4PB6PJ1HdRB6Px+Opgg8GHo/H4/HBwOPxeDw+GHg8Ho+HZQYDWeIBb8GQrruD/EeDO2kRkWtE5KnQ5zUROVtE2iPpoyLyhWCZ60UkH8rbWc8Kezwej+f1LDmaKHjg00+Ai6kMn3oMuFpVnwuV+W3g51X1v4vIVcCvquqHIut5B3Cvqp6xyHc8AXxcVb8X3FRyrqre4FY1j8fj8SyX5bwDeeEBbwAiMv+At+dCZbYDnw6m7wH+SkREj480V1O5g/U4RORM4E3A/1uJ+COPPKItLS0rWWSBY8eO0dzckNc/1wXv5451R+/njnVHi35HjhwZrfbay+WYLvaApfOrlVHVYyJSoHIDS/j9nx9i8aeEXgXcHQkcHxSR91A5I/m4qh6ILtTS0sLWrVuXof96Jicn6ejoWNWya4H3c8e6o/dzx7qjRb+BgYGq741fk7AlIucDR1T1dS+BoBIMrg3Nfwu4U1WPishHqDxK96LoQiMjI/T399Pc3Ey5XGbHjh3s2rWLXC5HW1sbTU1NTE5Oks1mGR8fR1XJZrMMDw9z7Ngx5ubmmJ6epre3l3w+j4jQ1dVFPp+no6ODcrnMzMwMGzZsIJfLsW7dOjKZDKOjo2QyGUqlEsVicSE/lUrR3t7O2NgYnZ2dFItFZmdnF/JbW1tJp9NMTEzQ3d3N1NQUpVJpIT+dTpNKpSgUCogI09PTzM3NLeQvVaf169cDrEmdmpubmZiYWFGdenp6KBQKa1anoaEhTj755Ib+n1zqNDw8zOmnn25u25uv0+HDhznjjDPMbXvhOhWLRZPb3nyd8vk8ExMT5ra9qsfpZVwzeDfwaVW9NJjfDaCqnwmVuT8osy94+FYOyM7/2heRW4C8qv5pZN2/APy9qp5Z5bubgHFVzUTz9u3bp6s5M7hkz5ML0w/sPGfFy68Fg4ODbN68OW6Nqlj3A/uO3s8d644W/QYGBp7o6+s7d7G85YwmWs4D3sIPuLqCysPM5gPBCcCVLHK9gMp1hDvDCZEXPlzO8W/XciIcCBabt8KGDRviVqiJdT+w7+j93LHuaN0vypLBQCsv4LgBuJ/KgfkbqvqsiNwsIpcHxW4DukVkP/AJjn+e/HuAA/MXoCNcSSQYAB+Vyvtif0jldYHXr6RCPwvkcrm4FWpi3Q/sO3o/d6w7WveLsqxrBqp6H3BfJO2m0PQs8GtVln2Eyrt9F8s7fZG03QTvNk0qra2tcSvUxLof2Hf0fu5Yd7TuFyVRdyBHrxFYvWaQTqfjVqiJdT+w7+j93LHuaN0vSqKCAVQCwJcu7jIbCAAmJibiVqiJdT+w7+j93LHuaN0vSuKCAUB3d3fcCjXxfu5Yd/R+7lh3tO4XJZHBYGpqKm6Fmng/d6w7ej93rDta94uSyGBQKpXiVqiJ93PHuqP3c8e6o3W/KIkMBtbH/3o/d6w7ej93rDta94uSyGBgffyv93PHuqP3c8e6o3W/KIkMBtaHfHk/d6w7ej93rDta94uSyGCQSqXiVqiJ93PHuqP3c8e6o3W/KIkMBoVCIW6Fmng/d6w7ej93rDta94uSyGDQ09MTt0JNvJ871h29nzvWHa37RUlkMLAesb2fO9YdvZ871h2t+0VJZDCYm5uLW6Em3s8d647ezx3rjtb9oiQyGFgf/+v93LHu6P3cse5o3S9KIoOB9fG/3s8d647ezx3rjtb9oiQyGLS1tcWtUBPv5451R+/njnVH635REhkMmpqa4laoifdzx7qj93PHuqN1vyiJDAaTk5NxK9TE+7lj3dH7uWPd0bpflGUFAxHZJiIviMh+EblxkfwWEbk7yH9URE4N0q8RkadCn9dE5Owg75FgnfN5b6q1rnqSzWbrvcq64v3cse7o/dyx7mjdL8qSwUBEmoBbgcuAs4CrReSsSLF+YEJV3wrcAnwOQFW/rqpnq+rZwLXAK6r6VGi5a+bzVXWk1rrqyfj4eL1XWVe8nzvWHb2fO9YdrftFWc6ZwXnAflV9WVVLwF3A9kiZ7cAdwfQ9QJ+ISKTM1cGyS7GcdTmhqvVcXd3xfu5Yd/R+7lh3tO4XpXkZZTYCB0LzQ8D51cqo6jERKQDdwGiozId4fRD5soiUgX8A/kQrrbecdTEyMkJ/fz/Nzc2Uy2V27NjBrl27yOVytLW10dTUxOTkJNlslvHxcVSVbDbL8PAwLS0tjI2NMT09TW9vL/l8HhGhq6uLfD5PR0cH5XKZmZkZNmzYQC6XY926dWQyGUZHR8lkMpRKJYrF4kJ+KpWivb2dsbExOjs7KRaLzM7OLuS3traSTqeZmJigu7ubqakpSqXSQn46nSaVSlEoFGhvb+fQoUPMzc0t5C9Vp/Xr1wOsSZ06OzsZHBxcUZ16enooFAprVqdSqcThw4cb+n9yqVOpVGJ2dtbctjdfp1KpxNGjR81te9E6DQ4Omtv25ut0wgknMDg4aG7bq4YsFb1E5Apgm6ruDOavBc5X1RtCZZ4JygwF8y8FZUaD+fOBPar6jtAyG1X1oIi0B8Hg/6jqV5da1zz79u3TrVu31nSvxuDgIJs3b17VsmuB93PHuqP3c8e6o0W/gYGBJ/r6+s5dLG85ZwYHgVNC85uCtMXKDIlIM5ABxkL5VwF3hhdQ1YPB3ykR+Tsq3VFfXca6nFm/fj2X7HlyYf6BnefUc/XOLBXB48a6H9h39H7uWHe07hdlOdcMHgO2iMhpIpKicmDfGymzF7gumL4C+G7Q5YOInABcSeh6gYg0i0hPML0OeD/wzFLrqhdX/+N/HDcfDgwej8eTRJYMBqp6DLgBuB94HviGqj4rIjeLyOVBsduAbhHZD3wCCA8/fQ9wQFVfDqW1APeLyNPAU1TOBr60jHUlgunp6bgVamLdD+w7ej93rDta94uynG4iVPU+4L5I2k2h6Vng16os+whwQSRtBnhXlfJV15UUent741aoiXU/sO/o/dyx7mjdL0oi70C+7dLjXzph7ZpBPp+PW6Em1v3AvqP3c8e6o3W/KMs6M/hZQ0TMBYAwdb6tou5Y9wP7jt7PHeuO1v2iJPLMoKurK26Fmng/d6w7ej93rDta94uSyGBg/fTN+7lj3dH7uWPd0bpflEQGg46OjrgVauL93LHu6P3cse5o3S9KIoNBuVyOW6Em3s8d647ezx3rjtb9oiQyGMzMzMStUBPv5451R+/njnVH635REhkMrL+o2vu5Y93R+7lj3dG6X5REBgPrL6r2fu5Yd/R+7lh3tO4XJZHBYN26dXEr1MT7uWPd0fu5Y93Rul+URAaDTCYTt0JNvJ871h29nzvWHa37RUlkMBgdHV26UIx4P3esO3o/d6w7WveLkshgYD1iez93rDt6P3esO1r3i5LIYFAqleJWqIn3c8e6o/dzx7qjdb8oiQwGxWIxboWaeD93rDt6P3esO1r3i5LIYGB9/K/3c8e6o/dzx7qjdb8oiQwG1sf/ej93rDt6P3esO1r3i5LIYJBKpeJWqIn3c8e6o/dzx7qjdb8oywoGIrJNRF4Qkf0i8rp3EotIi4jcHeQ/KiKnBunXiMhToc9rInK2iJwoIv9XRH4sIs+KyGdD67peRPKhZXbWrbYB7e3t9V5lXfF+7lh39H7uWHe07hdlyWAgIk3ArcBlwFnA1SJyVqRYPzChqm8FbgE+B6CqX1fVs1X1bOBa4BVVfSpY5vOquhU4B7hQRC4Lre/u+eVUdc/qq7c4Y2Nj9V5lXfF+7lh39H7uWHe07hdlOWcG5wH7VfVlVS0BdwHbI2W2A3cE0/cAffL6d75dHSyLqh5R1YeD6RIwAGxaXRVWTmdn51p91arwfu5Yd/R+7lh3tO4XZTnvQN4IHAjNDwHnVyujqsdEpAB0A+Fb8D7E64MIInIS8N+Avwglf1BE3gP8BPi4qh6ILjcyMkJ/fz/Nzc2Uy2V27NjBrl27yOVytLW10dTUxOTkJNlslvHxcVSVbDbL8PAwx44dY25ujunpaXp7e8nn84gIXV1d5PN5Ojo6KJfLzMzMsGHDBnK5HOvWrSOTyTA6Okomk6FUKlEsFhfyU6kU7e3tjI2N0dnZSbFYZHZ2diG/tbWVdDrNxMQE3d3dTE1NUSqVFvLT6TSpVIpCoYCIMD09zdzc3EL+UnVav349wJrUqbm5mYmJiRXVqaenh0KhsGZ1Ghoa4uSTT27o/8mlTsPDw5x++unmtr35Oh0+fJgzzjjD3LYXrlOxWDS57c3XKZ/PMzExYW7bq4aoau0CIlcA21R1ZzB/LXC+qt4QKvNMUGYomH8pKDMazJ8P7FHVd0TW3Qx8C7hfVb8QpHUD06p6VEQ+AnxIVS+Keu3bt0+3bt1a070ag4ODbN68eVXLrgXezx3rjt7PHeuOFv0GBgae6OvrO3exvOV0Ex0ETgnNbwrSFi0THOAzQLjD7CrgzkXW/b+BF+cDAYCqjqnq0WB2D/CuZTiuCOvjf72fO9YdvZ871h2t+0VZTjB4DNgiIqeJSIrKgX1vpMxe4Lpg+grguxqccojICcCVBNcL5hGRP6ESNH4nkv7m0OzlwPPLqskKsD7+1/u5Y93R+7lj3dG6X5QlrxkE1wBuAO4HmoDbVfVZEbkZeFxV9wK3AV8Tkf3AOJWAMc97gAOq+vJ8gohsAj4F/BgYCK41/1UwcuijInI5cCxY1/Xu1Tye1tbWeq+yrng/d6w7ej93rDta94uynAvIqOp9wH2RtJtC07PAr1VZ9hHggkjaEBAdbTSftxvYvRyv1ZJOpxu5eme8nzvWHb2fO9YdrftFSeQdyBMTE3Er1MT7uWPd0fu5Y93Rul+URAaD7u7uuBVq4v3cse7o/dyx7mjdL0oig8HU1NTC9CV7nlz4WCHsZxHrfmDf0fu5Y93Rul+URAaD+ZdORAOAlYBg/aUY1v3AvqP3c8e6o3W/KIkMBtbH/3o/d6w7ej93rDta94uSyGBgffyv93PHuqP3c8e6o3W/KIkMBvNDvh7Yec5x6dH5uLA+JM26H9h39H7uWHe07hdlWfcZ/KwRfumElQAQxvpLMaz7gX1H7+eOdUfrflESeWZQKBTiVqiJ93PHuqP3c8e6o3W/KIk8M+jp6XldWngkUdxnC4v5WcK6H9h39H7uWHe07hfFnxlgb4ip9V8U1v3AvqP3c8e6o3W/KIkMBnNzc3Er1MT7uWPd0fu5Y93Rul+URAYD6+N/vZ871h29nzvWHa37RUlkMIiO/7U2xNT6+GTrfmDf0fu5Y93Rul+URF5Abmtre11a3AEgzGJ+lrDuB/YdvZ871h2t+0VJ5JlBU1NT3Ao18X7uWHf0fu5Yd7TuFyWRwWBycrJqnoWnmNbys4B1P7Dv6P3cse5o3S/KsoKBiGwTkRdEZL+I3LhIfouI3B3kPyoipwbp14jIU6HPayJydpD3LhH5UbDMX0rw7ksR6RKRB0XkxeBvZ/2qWyGbzS6abmWIaTU/K1j3A/uO3s8d647W/aIsGQxEpAm4FbgMOAu4WkTOihTrByZU9a3ALcDnAFT166p6tqqeDVwLvKKqTwXLfBH4MLAl+GwL0m8EHlLVLcBDwXxdGR8fX3bZOALCSvziwLof2Hf0fu5Yd7TuF2U5F5DPA/bPv9BeRO4CtgPPhcpsBz4dTN8D/JWIiKpqqMzVwF3BOt4MdKjqD4L5rwIfAL4TrOu9wTJ3AI8Av7+yatXmeK2luWTPkwsXmKN3KjfizuWV+q011v3AvqOqxn5z49Lk4xZYBtYdG+dX70EvywkGG4EDofkh4PxqZVT1mIgUgG5gNFTmQ1QO9PPlhyLr3BhM96rqq8F0DuhdhuOKqHb6Fj24h1ksfalupdX+s6yfXlr3A/uO/fePLl3I46lB+EdqPViToaUicj5wRFWfWclyqqoisuhPvJGREfr7+2lubqZcLrNjxw527dpFLpejra2NpqYmJicnyWazjI+Po6pks1mGh4cpFotks1mmp6fp7e0ln88jInR1dfGli7v48IP1Ob27ZM+TfOvas8jlcrS2tpJOp5mYmKC7u5upqSlKpRIbNmwgl8uRTqdJpVIUCgVKpRJtbW3Mzc0t5C9Vp/Xr1wMsWqd8Pk9HRwflcpmZmZmFda5bt45MJsPo6CiZTIZSqUSxWFzIT6VStLe3MzY2RmdnJ8VikdnZWcrlMk1NTSuqU09PD4VCYc3q9NJLL/GWt7xl2XWaz1+rOnk89WBwcLBu254sdTotIu8GPq2qlwbzuwFU9TOhMvcHZfaJSDOVX/TZ+W4iEbkFyKvqnwbzbwYeVtWtwfzVwHtV9SMi8kIw/WpQ7hFVfVvUa9++fbp169ZlNViUsbGxJV9WXc9T+JVG7+X4xYl1P7DvaL+LyPNGYKXHloGBgSf6+vrOXSxvOaOJHgO2iMhpIpICrgL2RsrsBa4Lpq8AvhsKBCcAVxJcLwAIuoEmReSCYBTRbwD/tMi6rgulryn1PP2Ke6iqxx53/upb4lbwvMFZ82sGwTWAG4D7gSbgdlV9VkRuBh5X1b3AbcDXRGQ/ME4lYMzzHuDA/AXoEL8NfAVIU7lw/J0g/bPAN0SkHxikEkjqyvT09LJ+Nda6hrAaqq0r+j1furjL9K/a5bZfnFh3nJ6eNnXXe5TBwUE2b94ct0ZNrDta94uyZDeRVVy6iWZnZ2ltbXX6/rX8pR8+aFh470I92q/RWHf0fu5Yd7To59pN9DNHPu8+3OuBnecc94nm1ZP5AGDlprh6tF+jse7o/dyx7mjdL0oiH1QX3OxcV6oFhJ/FawWNaL96Y93R+7lj3dG6X5REnhl0dXWt2XdZ7hdeLWvZfqvFuqP3c8e6o3W/KIkMBmt9+rbYWcNKgkS1C9lxBZo3wumvdUfv5451R+t+URLZTdTR0bHm37naA7e1QADxtN9Kse7o/dyx7mjdL0oizwzK5XLcCsvG4jWHN0L7WXf0fu5Yd7TuFyWRZwYzMzP09PTErbHog+6We/CPP0gcWLpI7Fh3PGD2mpKVfaQW1h2t+0VJ5H0GR48epaWlpc5G9WPeL/4DvmctsBgQrO8jYN/Rop+/zyCC9RdV1/KzeODw/OxhfR8B+47W/aIkMhjce++9cSvUZN6v0TezrZo3wtmkdUfjftb3EbDvaN0vSiKDwTe/+c24FWoS9lvsLue4g8Jrxg9kYN9x3i/u/2U1rO8jYN/Rul+URF5APnbsWNwKNVmOX5wHkQsvvJDvf//7sX3/crDuaN3P+j4C9h2t+0V5w15Afuihh/JUnmq6YsbHx3u6urrMvmrK+7lj3dH7uWPd0ajf5r6+vkVfA/iGDQYej8fjqR+JvGbg8Xg8nuPxwcDj8Xg8yQoGIrJNRF4Qkf0icmPcPgAicoqIPCwiz4nIsyLysSC9S0QeFJEXg7+dMXs2iciTIvLtYP40EXk0aMu7g1eixuV2kojcIyI/FpHnReTdltpPRD4e/G+fEZE7RaQ17vYTkdtFZEREngmlLdpmUuEvA9enReSdMfn9WfA/flpE/lFETgrl7Q78XhCRSxvtV80xlPdJEVER6Qnm17wNV0pigoGINAG3ApcBZwFXi8hZ8VoBcAz4pKqeBVwA7Aq8bgQeUtUtwEPBfJx8DHg+NP854BZVfSswAfTHYlXhL4B/VtWtwC9Q8TTRfiKyEfgocK6qvp3Kq2OvIv72+wqwLZJWrc0uA7YEn98CvhiT34PA21X154GfALsBgv3lKuDngmX+Otjf43BERE4BLgH+I5QcRxuuiMQEA+A8YL+qvqyqJeAuYHvMTqjqq6o6EExPUTmQbaTidkdQ7A7gA7EIAiKyCfgVYE8wL8BFwD1Bkdj8RCRD5T3btwGoaklVD2Oo/agM4U6LSDNwIvAqMbefqn6PyvvKw1Rrs+3AV7XCD4CTROTNa+2nqg+o6vx4zR8Am0J+d6nqUVV9BdhPZX9vKFXaEOAW4PeA8OicNW/DlZKkYLCR459cNhSkmUFETgXOAR4FelX11SArB/TG5QV8gcrG/Vow3w0cDu2YcbblaUAe+HLQjbVHRNow0n6qehD4PJVfia8CBeAJ7LRfmGptZnHf+U3gO8G0GT8R2Q4cVNUfRrLMOFYjScHANCKyHvgH4HdUdTKcp5Xxv7GMARaR9wMjqvpEHN+/DJqBdwJfVNVzgBkiXUIxt18nlV+FpwEnA20s0rVgjTjbbClE5FNUule/HrdLGBE5EfgD4Ka4XVZDkoLBQeCU0PymIC12RGQdlUDwdVWdv4d9eP40Mvg7EpPehcDlIvJTKl1rF1Hpoz8p6PaAeNtyCBhS1UeD+XuoBAcr7ffLwCuqmlfVOeCbVNrUSvuFqdZmZvYdEbkeeD9wjf7nTVJW/M6gEvR/GOwvm4ABEdmAHceqJCkYPAZsCUZxpKhccNobs9N8//ttwPOq+uehrL3AdcH0dcA/rbUbgKruVtVNqnoqlTb7rqpeAzwMXGHALwccEJG3BUl9wHMYaT8q3UMXiMiJwf963s9E+0Wo1mZ7gd8IRsRcABRC3Ulrhohso9JdebmqHgll7QWuEpEWETmNykXaf19rP1X9kaq+SVVPDfaXIeCdwTZqog1roqqJ+QDvozIK4SXgU3H7BE6/SOV0/GngqeDzPir98g8BLwL/AnQZcH0v8O1g+nQqO9x+4O+Blhi9zgYeD9rwXqDTUvsBfwT8GHgG+BrQEnf7AXdSuYYxR+Wg1V+tzQChMhLvJeBHVEZGxeG3n0q/+/x+8jeh8p8K/F4ALourDSP5PwV64mrDlX784yg8Ho/Hk6huIo/H4/FUwQcDj8fj8fhg4PF4PB4fDDwej8eDDwYej8fjwQcDj8fj8eCDgcfj8XjwwcDj8Xg8wP8H0d0dOiLSDmAAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure()\n",
"fig.add_subplot(211)\n",
"plt.plot(mdbCO.jlower,mdbCO.n_Texp,\".\")\n",
"fig.add_subplot(212)\n",
"plt.plot(mdbCO.jlower,mdbCO.alpha_ref,\".\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thermal broadening\n",
"\n",
"$\\sigma_D^{t} = \\sqrt{\\frac{k_B T}{M m_u}} \\frac{\\nu_0}{c}$"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.789289Z",
"iopub.status.busy": "2022-10-20T05:43:28.789002Z",
"iopub.status.idle": "2022-10-20T05:43:28.855295Z",
"shell.execute_reply": "2022-10-20T05:43:28.854086Z"
}
},
"outputs": [],
"source": [
"# thermal doppler sigma\n",
"sigmaD=doppler_sigma(mdbCO.nu_lines,Tfix,Mmol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, the line center...\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.863012Z",
"iopub.status.busy": "2022-10-20T05:43:28.861844Z",
"iopub.status.idle": "2022-10-20T05:43:28.866342Z",
"shell.execute_reply": "2022-10-20T05:43:28.865141Z"
}
},
"outputs": [],
"source": [
"#line center\n",
"nu0=mdbCO.nu_lines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Although it depends on your GPU, you might need to devide the computation into multiple loops because of the limitation of the GPU memory. Here we assume 30MB for GPU memory (not exactly, memory size for numatrix). "
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:43:28.875631Z",
"iopub.status.busy": "2022-10-20T05:43:28.874463Z",
"iopub.status.idle": "2022-10-20T05:46:17.256627Z",
"shell.execute_reply": "2022-10-20T05:46:17.256383Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 8257/8257 [05:14<00:00, 26.22it/s]\n"
]
}
],
"source": [
"xsv=auto_xsection(nus,nu0,sigmaD,gammaL,Sij,memory_size=30) #use 30MB GPU MEMORY for numax"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot it!"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:46:17.266163Z",
"iopub.status.busy": "2022-10-20T05:46:17.260439Z",
"iopub.status.idle": "2022-10-20T05:46:17.919170Z",
"shell.execute_reply": "2022-10-20T05:46:17.918888Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAADSCAYAAAAYCPc3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABWkUlEQVR4nO29eXgkZ3Xv/zlqqSWNtpE08oztsT3e8GDMDRhjMGAgGQi2w5I4Bmy4hJAh95LYMQRIDIRfArlAWEJCnBBILmZxAma7YIxjswa8MV7HNl7HnhmPZtFol3pfq8/vjyr1tFotqVu9lFo6n+fpR91vbW/p21V1+rzvOUdUFcMwDMMwDGN10+J3BwzDMAzDMIzlMaPNMAzDMAyjCTCjzTAMwzAMowkwo80wDMMwDKMJMKPNMAzDMAyjCWj1uwP15pe//KW2t7f73Y2mJ5vN0tq65r8uaxrTsPkxDZsb06/5aYSG8Xh8cseOHUOllq35b097ezvbt2/3uxtNz8jICCeccILf3TCqwDRsfkzD5sb0a34aoeHu3buHF1tmw6NGWfT19fndBaNKTMPmxzRsbky/5sdvDc1oM8picnLS7y4YVWIaNj+mYXNj+jU/fmtoRptRFn7/ujCqxzRsfkzD5sb0a3781nDNz2krhaoSjUaxEl4uIkJ3dzcisug66XS6gT0y6oFp2PyYhs2N6df8+K3hujTaotEo7e3tBINBv7uyKkin00SjUXp6ehZdJ5FINLBHRj0wDZsf07C5Mf2aH781XJfDo6pqBlsBwWBwWa/jli1bytqXqjKbyNSiW0aNKVdDY/ViGjY3pl/z47eGTWW0ichpInKdiHzX+3yhiHxRRL4kIr/yu39rmdHR0Xmfb98/w617phasd+ueKf7hjoON6pZRAcUaGs2HadjcmH7Nj98a+mK0iciXRWRcRB4tar9IRPaIyF4R+UDxdqq6X1V3Fny+Q1XfBdwMfK3+PV+/FHomQ8ks+6YSfOvhMXYNh/LtU7EM33holHsOhv3oorEM5l1ufkzD5sb0a3781tAvT9tXgYsKG0QkAHweuBg4G7hCRM4uc39vAb5Ryw42A7feeiuf+9znGnKswvluY5E0h0JJsrkcPyrwtj02FmU8mkGBX+ybbki/jPJZas6i0RyYhs2N6df8+K2hL0abqt4OFD/Vzwf2et60NPBN4A0i8gci8jkRObHUvkTkZCCkqpH69nr1cfHFF/Oe97ynIceamppCVZmOZ9g3nSCScgBwVBmNpFBVnpyI59e//oFRi85dZUxNLRzONpoL07C5Mf2aH781XE3RoycChwo+HwZepKp/B1wPICKDwMeB54vIB71lO4GvLLbT8fFxdu7cSWtrK47jcOmll/KOd7yDVCpFS0sLIoLjOPnlAK2trWQyGQKBAACO49DW1kY2mwUgEAiQzWYJBAKoKrlcjra2NjKZDCJS9vLvf//7/Pu//zuZTIYXvOAFvPnNb+b9738/P/nJT0in01xyySV88YtfZPPmzbzvfe/jwIEDdHZ28tnPfpbt27fzne98hwcffJBPfOIT/PznP+ezn/0smUyG/v5+Pv/5z3P88cfzwQ9+kP7+fq655hp+8pOfcO2113LjjTeiqvPOKZvNMjw8TG9vL47jEIvF2LJlC6Ojo7S1tdHR0cGdj+7n+ME+du2fZCycAgIkEgl+8ughfveczdxz4NiX+Ug4xYOHZxnMheno6KCzs5OZmRkGBweJRCKk0+n8/js7OwkGg4RCITZt2kQoFCKTyeSXd3V1EQgECIfDDA0NMT09jaoyNDTE2NgY3d3dgBsVvHnzZiYmJhARBgYGmJiYWPSc+vr6mJycpK+vj3Q6TSKRyC8PBoP09PQwNTVFf38/iUSCZDKZX96M55TL5YhGo2vqnNaiTkudUyqVYmxsbE2d01rUabFzSqVSpFKpNXVOa1Gnpc7JcRyGh4frek5LIX55Q0RkG3Czqp7jfb4MuEhV3+l9fhuu0XZVNcfZtWuXFtceDYfD9Pb2Am60YyKTq+YQC+hsa1ky5xnAnj17+MhHPsL1119PW1sb73//+znvvPPYt28fyWSSZDLJCSecwJ//+Z9zzTXXMDAwwDXXXMPtt9/Ohz/8YW6//Xa+8Y1v8NBDD/HpT3+a2dlZ+vr6EBGuv/56nnrqKT72sY8Rj8fZsWMHn/70p3nf+97Ht771LU499dQF/Sn8n5RibGyMh0OtPPf4br549xEOzyZJOTm29XcyuKGNq196Elf9YA/7po6FQ792+yauftlJK/9HGjVlbGyMzZs3+90NowpMw+bG9Gt+GqHh7t27H9ixY8d5pZatJk/bEaDwCb/Va1uT3H777Tz88MPs2LEDgGQyyaZNm/iLv/gLduzYQXt7O5/85CcBuPvuu/na19w4i5e//OVMT08TDs+f7D8yMsIf/dEfMTY2RiaT4eSTTwZgw4YNfO5zn+O1r30tH//4x0sabOXwzGSMp0Jt5Cqw8Y+Ekys6llEfkknTo9kxDZsb06/58VvD1WS03QecKSKn4hprl+MGGNQVEWFDMFDvwyxAVbn88sv567/+63nto6OjxGIxMpkMyWSSrq6usvZ3zTXX8Kd/+qdcfPHF3HnnnXzqU5/KL3viiScYGBioKlS5p3+APXvHSGVzoDBnu805amNph2Kn7f7pJPccDPGik610y2rA7/xCRvWYhs2N6df8+K2hXyk/bgB2AWeJyGER2amqWeAq4MfAE8C3VfUxP/rXCF7+8pdz0003MTExAcDMzAyHDh3ive99Lx/60Id44xvfyEc/+lEALrjgAr7zne8AcOeddzI4OLhgKDMcDnP88ccDcMMNN+TbDx06xOc//3l++ctf8rOf/Yz777+/4r6qKvtGJo599kw2QfLvj4RTJbddrN1oPH7nFzKqxzRsbky/5sdvDX3xtKnqFYu03wLc0uDu+ML27dv50Ic+xO///u/nAxUuvvhiWltbueyyy3Ach9e85jXcfvvtXHPNNfzZn/0ZL3vZy+js7ORf//Vf8/uZmzt3zTXX8I53vIONGzdy4YUXcvDgQVSVq6++mr/927/l+OOP59prr+XKK6/k5z//OR0dHWX39enJBPvCy4+LFk/jCyWzDM/YcMBqoRLNjdWJadjcmH7Nj98arqbh0XXHpZdeyqWXXlpyWSAQ4Gc/+1n+83/+538uWGd6epqNGzcCcMkll3DJJZcsWOf73/9+/v3znvc87rrrror7qShPTGdobyv9dYmnHe58ZpZSoRe/Gg7x5xdWfEijDnR2dvrdBaNKTMPmxvRrfvzWsKnKWBnH+MpXvsINN9zAm970prof6+nJRD4dCrjz2Arnrx0Jp5hNZinliwsls3Xvn1EeMzMzfnfBqBLTsLkx/ZofvzU0o61Jecc73sFdd93F6aefXtfjjHhz0loDrpftwCLDnQrz0n0Yq4/BwUG/u2BUiWnY3Jh+zY/fGprRZizJr49GvQTBDjlV9nhVD5LZHJFUFlWYjme452Bo0X2ks7XNg2esjEhk3RUNWXOYhs2N6df8+K3hupzTJiKk02nfC7+uFtLp9KLJgNNOjljaIe0ohwo8aVPxTP79bDK7ZP62WMYh2Gq/D/wmnU773QWjSkzD5sb0a3781nBdGm3d3d1Eo1Hfk+StFkQkX2qjkLST4+lJ17N2NOYsWA7usOhyRTUOzSbp72yrtptGlfidX8ioHtOwuTH9mh+/NVyXRpuI0NPT43c3Vj2RpMO+qQSnDy4dLSOytOH2mdsO8h+XP6fGvTMqZXR0lFNOOcXvbhhVYBo2N6Zf8+O3hjZmZSzKaHT5xLhLV1h1yflU39aYj9+h6kb1mIbNjenX/PitoRltxqKEk+6Q6GgkXZZxthgTsczyKxl1x+ZwNj+mYXNj+jU/fmtoRptRkqlYJl+iKpJaPNea+dCah1Bo8QhfozkwDZsb06/58VvDsue0ichxwGuA3wA2ArPAw8BPVdUKqq0xHhyJ0F4Q8Vk4b63QUDscsmCOZmHTpk1+d8GoEtOwuTH9mh+/NVzW0yYizxaR7+IWcX8b0AaMen/fBjwmIt8VkbPr2lOjoaScHHun4hyYSS6ogFD4PpHJlTV0Oh23IVK/8fsXolE9pmFzY/o1P35rWI6n7avAZ4C3quqCmeki0g68HrgOuKCmvTN8IePkGI2kaRHI5txB0sUiRCMph0AZVtvRcIqBDZb2w08yGTOcmx3TsLkx/ZofvzVc1tOmqi9S1e+WMti85SlV/Y6q1t1gE5HTROQ6z/OHiJwtIt8WkS+IyGX1Pv564ZnpJNGCeWzK/ChRXcFMtiPh5SNRjfrid34ho3pMw+bG9Gt+/NbQl0AEEfmyiIyLyKNF7ReJyB4R2SsiHyjeTlX3q+rOgqaLgX9W1T8B/qDO3TaqYLGapUbjGB21qafNjmnY3Jh+zY/fGpYzp+1cEfmGiHxcRDaIyJki8ldVHverwEVFxwkAn8c1xM4Grihjntx/AJeLyGcAq8RbI2IZh6ORNPsXKQBfPEy6WAksY3XR1dXldxeMKjENmxvTr/nxW8Ny5rS9FvjfwFbg3cC/AK8APr7Sg6rq7SKyraj5fGCvqu4HEJFvAm8QkfOAc4HPqOqRov2MA1d6Bt/3Sh1rfHycnTt30traiuM4XHrppVx55ZWMjo7S1dVFIBAgHA4zNDTE9PQ0qsrQ0BBjY2P50k7RaJTNmzczMTGBiDAwMMDExAS9vb04jkMsFmPLli2Mjo7S1tZGX18fk5OT9PX1kU6nSSQS+eXBYJCenh6mpqbo7+8nkUiQTCbzyzs6Oujs7GRmZobBwUEikQjpdDq/vLOzk2AwSCgUYtOmTYRCITKZTH55Lc7poeEZpiNxBro7AHcM3ykw1Iprr2WXKjzqkUqlGB4e9u2c1qJOlZ5TNpulo6NjxeeUbQkymoCt7elVc05rUaelzmlqagrHcdbUOa1FnRY7p3A4TE9Pz5o6p7Wo01LnNDs7O+/49TinpRBdJlu9iPwecERV7/U+vw74/1T1/GWf1Evvdxtws6qe432+DLhIVd/pfX4b8CJVvapgm0FcY/HVwJeAG4APAV3AF1T1zuLj7Nq1S7dv315NV9cVaSfHjY9N8PUHR3nO5i7uPxyhpz1AJHWs9uh5W3u4/3Ckov2+5lkDvO/lVr7FT4aHh8suvzKTyNDX0UpLgRf1+geO8oPHJ/jKG8+mt2NdVsDznUo0NFYfpl/z0wgNd+/e/cCOHTvOK7WsnDvvI8DrgHsBVPWHIuLLHVtVp4B3FTX/Lz/6slY5MJ0k6yiJTC4/DFposMHKKhwcmrVABL8ZGhpadp2DM0l++vQU2ZyysbONN//G5vyy/3zQ/QV40xOT/M/n24RqPyhHQ2P1Yvo1P35rWE706F5V/ceitu/PvReRU2vUlyPASQWft3ptRgPZN53g0bHokuuMriAS9MBM6flxRuOYnp5edp2f75vmqck4vx6N8thYlHjaNdh/9vSxba9/4Gjd+mgsTTkaGqsX06/58VvDFUWPisjpIvJab7iyo0bpNu4DzhSRU0UkCFwO3FSD/RoV4ORcL9tSpBwrXtWMLDUVQlW545lZ4ulcQRs8fNQ14K3yxepgueksxurG9Gt+/NZwpSk/PgL8DnAH8HfAb1WysYjcAOwCzhKRwyKyU1WzwFXAj3GrL3xbVR9bYf+MKoh63pVyAgzKJb6MIWjUn6Xc+k9PJbj/cHhB+72H3Ozf+xaJJDYai99DM0Z1mH7Nj98arnRu2jdU9VYAEbkAqOiJrKpXLNJ+C3DLCvtk1Ii5IbH907V9UKuqpQfxkbGxsZITaNNOjluenMx/LjTVM55XdaRoSPxoJMXxPe116aexOItpaDQHpl/z47eGK/W0pUXkNABV3aWq99SwT4ZPHJpNcmg2uYJ6B+XxzLQNsfnJXOh5MclMbtEh8We8uYjFwSgHTEtfWExDozkw/ZofvzVcqaftD4EXi8g+4Ce4qTueqlmvDF/49WiUR0aj+ZJVNv1ifXDXgdmCTwtF/++9CyfejkYsGtgwDKPRrNTTdqOqnglcCcSB99WuS4af7J1KmLG2RolGF0YFT8bSC+rCzumv3vtUdqEXrtZD50Z5lNLQaB5Mv+bHbw1X6mnLAajqPmBf7bpj+EUi4zARdSsd5Oo2QGr4yebNmxe07Z1KkJ4XDTx/zuGRcIp7DoUXfCPGo2mMxlNKQ6N5MP2aH781XKmn7UIR+bmI/JGIbK1pjwxf2DeVYNJLmlvoaaklo1EbUvOTiYmJeZ9HIykeHjlW2eK+Q2EKVVeFRCbHr4ZDRFLZom3NaPODYg2N5sL0a3781nClRtujwF8AQ8BXReSXNeuR4QsPH40S8aJGZxLZZdZeGcWT2Y3GUhy5++R4nGxO+dXwLLG0w2Q8w0wii6OKKkzEjhlmxdlfjprR5gsWfd3cmH7Nj98arnR49B5gq6p+CviU+H0WRlUkMg6xtMOu4VBdj5OxpLy+MjAwkH+fdnI8PRkHYDyaoa3F/f02Fk1zYCbJSX3tHJixCNHVRqGGRvNh+jU/fmu4Uk/b06r6YwAR6VS/UwQbVTERy5DILPSC1VrWYStl5SuFbv17Ds6fp1b4vlTggbE68HtoxqgO06/58VvDlRptd4lIl/f+dBG5qFYdMhrPkVCqZEF3q2Kwtujt7c2/n01kyDiL62u+89VJoYZG82H6NT9+a7hSo+2vVTUGoKqPAhtq1yXDD1JLPMCNtYHjuN7UeNph/3SCuw8ujAqdQ1jeanNqWObMKI85DY3mxPRrfvzWcKVG2wu9YvFz2KzkJqcRQQLjXnSq4Q+xWAxwS1LdeyhMJJVdkJOvkhHxuRq1RuOY09BoTky/5sdvDVcaiPAl4FYRuR94GjgOuLlmvTIaSiztNCTD/UzcjDY/2bJlCwCPjEaZiGXobFv8N5tarr5VyZyGRnNi+jU/fmu4Ik+bqo4ArwTuA2LAJ2rYJ6PBHA41JkrQzAB/GR0dBWD3kWO52Yo1mTPWLLRodTKnodGcmH7Nj98aLmu0icjVItJe3K6qcVX9iqr+O24B+avr0sP5ffldEfm/IvItEfltETlNRK4Tke/W+9hrlWxOORxK2UN6HdDW1sZIOJVPjDt/1lrlxlqjjH3jGG1tbX53wagC06/58VvDcjxtW4C9IvJvIvIWEXmBiDzL+3uFiHyRY0OkZSEiXxaRcRF5tKj9IhHZIyJ7ReQDxdup6o2q+sfAu4A3q+p+Vd1Z7nGNheRyyn2HF5+QXktm65S01yiP3t5ehmeShFPL65AsI+1HwqKLG05fX5/fXTCqwPRrfvzWcFmjTVU/BDwf1zDbCdyKWxHhFuCPgD3A81X1wxUc96vAvDQhIhIAPg9cDJwNXCEiZy+y/Ye9dY0qSWZzDXv4TtmcNl959OA4sbQzr0zZkVDpuYyHF2k3/GVyctLvLhhVYPo1P35rWFYggqpOAn/vvapGVW8XkW1FzecDe1V1P4CIfBN4g4icB5wLfAYYAT4J3Kqqu8s51vj4ODt37qS1tRXHcbj00ku58sorGR0dpauri0AgQDgcZmhoiOnpaVSVoaEhxsbG6O7uBiAajbJ582YmJiYQEQYGBpiYmKC3txfHcYjFYmzZsoXR0VHa2tro6+tjcnKSvr4+0uk0iUQivzwYDNLT08PU1BT9/f0kEgmSyWR+eUdHB52dnczMzDA4OEgkEiGdTueXd3Z2EgwGCYVCbNq0iVAoRCaTyS+v9Jx++OChJf9/Qu3moqkq0Wi07ue0FnWqxTkNz6bp7k3i5Jy8Hg96tUcjSdegriScfWpqimFnxnRq4Dklk0nGxsbW1DmtRZ0WO6dkMkkqlVpT57QWdVrqnLLZLMPDw3U9p6UQv4oZeEbbzap6jvf5MuAiVX2n9/ltwItU9aqCba4G3o4bAPEQ8B3g48CrgS+p6t8VH2fXrl26ffv2+p5MkzIVy3D7MzN84e4jDTvmT975/IYdy5jP9x44QG9vL/9+zxFmk1k2tLUsSKB82kAn+6fLq1zxiYtO57ytliy0kYyPj3PccWXPRDFWGaZf89MIDXfv3v3Ajh07ziu1bKUpP3xBVa8Fri1qfpcffVkLTCcyy3rRaulpM/xjOp5h99EYr+jtWXK9mOVeW9UkElYKrpkx/ZofvzVcaXLdenAEOKng81avzagToWSW5ZLam8G2NrjuvhE6OjpQPaZpKW3LCUAw/MPvHFFGdZh+zY/fGq4mo+0+4EwROVVEgsDlwE0+92lNk3GUpyfjfnfDaADPTLvzOO47FF5yvZzlflnV1CNH1D/cfpB7D4Vqvl9jIX7n+DKqx28NfTHaROQGYBdwlogcFpGdqpoFrgJ+DDwBfFtVH/Ojf+uJRs9pjJSRbsKoLTOJDHunEkQy8yN4S1UXreTrYPZd4wkGgzXd33g0zY+emuKbD4/VdL9GaWqtn9F4/NawojltngfsD4HnAd2Fy1T1D8rdj6pesUj7LbipRIwGUE6+rlqTduxJ32ge8iJE981meNampRNDmjqrm56epeckLsXdB0M8Nhbj7S84ntYW12T/5b4ZAB4dtZqYjaAa/YzVgd8aVhqI8DXgN4AfAvbTrMkZjaTtIb0O+PFT04BnMMsx72op7f2KJjfKY2pqKp9CoFxUla/cf5RIKsueiTjBgPC2c48H4L7DSw+XG7VlJfoZqwu/NazUaLsIOFVVZ+vQF6OBTMczvjygo6ksgxuslEujCCez82qNUhCIUGp4dLnAFMNf+vv7K97mB49PMpvIEvAmwzw1EedIKMWJfe3z0ruoKiKlvhVGrViJfsbqwm8NK53TdhBYUIfUaD4mYxlmk9lFM+LXi6Ne3UujMRyYmV8f1Gyy5qbSdAMPHA7zTFHePQWOhN3vRSR1LMVLufn5jJXjd7oIo3r81rBST9v1wA9E5J8oGh5V1f+uWa+MujMaSTEeTXPIyhWtaX41PLvoslJeFTPqVjfJZHL5lTxmExkeKPCyFmp7JJTima4iY87ErzuV6GesTvzWsFKjba46wSeK2hU4rfruGI3i4GySA9NJu1OvYZ6ejC9IlltoppUaHreUH6ubSnJE/Wo4RCJTOllyJOWQKQoKMuXrj985vozq8VvDioZHVfXURV5msDUZE7EMmZzajXoNM28um4eIzBsSK6b4QW6sLsrNETUaSfHk+PwcjIIbMX7voTCj0TT7bDi04fid48uoHr81rLiMlYicCVwBnIhbseAGVX261h0zGkOjH9GHbTi2YUzE0gscqWamNzcdHR1lrffQSLRk+3jUzdO3fyrO2cd11axfRnmUq5+xevFbw4o8bSLyOuABYDswDZwF3C8ir69D34w6Ek877vBYg5/hyUWGa4zaMxXLLGws0Lu4WLyx+uns7Fx2ncfGouyfTvDkRIz/enIq3154qY9FS3w3jLpTjn7G6sZvDSuNHv0E8AZVfYuqflBV3wq8gYVz3IxVzpFwimxOyViOhzXJkVCSp6xE2ZpjZmZm2XVufmKSGx+bYCbhJs8uVaoulnYYCc/3eluyj/pTjn7G6sZvDSs12rYCdxS13em1G02AqjIedZPqmqdl7fLw0Wj+oV2ImejNzeDg4JLLb3p8goOz86Pb9k65c9eKh0znKmUYjWM5/YzVj98aVmq0PQS8r6jtvV670QQocNeBWUb9ypdmyTvrTiSVJet5UC0v3toiElnc0Eo7Ob72wNGSy7K53ALPmtF4ltLPaA781rDSQIQ/BW4SkXcDh4CTgRjwulp3zKgPqhBOOQtSQTS0A0ZdGZ5Jcv/hMKrKI6PzvSu1/PdbUEPjSacXN8JvfXKKSMrh+J6FP4xKTYOw30+NZyn9jObAbw0rMtpU9QkReTbwYuAEYAS4R1UbMqtVRH4X+B2gF7gO13B8N7AJ+LmqfqER/Wh2/LxXD89acsl684t9MxwOpbDsHWuPxXJEzSQyi3rZjNWD3zm+jOrxW8Nlh0dF5OUF738LeDkQBCa9vxd67WUjIl8WkXERebSo/SIR2SMie0XkA8XbqeqNqvrHwLuAN6vqE6r6LuBNwEsr6cN6JZn1dx5bOmuWRL05HEoStyjdNcliOaIeHY0R9ct7bpSN3zm+jOrxW8NyPG3/Cpzjvb9ukXUqrYjwVeBfcMtiASAiAeDzwKuBw8B9InKTqj5eYvsPe+vipRv5E+A/Kjj+umU67ibVFWxS+lrEySl7pxK0BWzsay1SKt3AE+MxxqLLDNmUcbHbcGn98TtdhFE9fmu4rNGmqucUvD+1FgdV1dtFZFtR8/nAXlXdDyAi3wTeICLnAecCn8Edjv0kcKuq7vb2dRPuPLv/Ar5RfKzx8XF27txJa2srjuNw6aWXcuWVVzI6OkpXVxeBQIBwOMzQ0BDT09OoKkNDQ4yNjdHd3Q1ANBpl8+bNTExMICIMDAwwMTFBb28vjuMQi8XYsmULo6OjtLW10dfXx+TkJH19faTTaRKJRH55MBikp6eHqakp+vv7SSQSJJPJ/PKOjg46OzuZmZlhcHCQSCRCOp3OL+/s7CQYDBIKhdi0aROhUIhMJpNfvtw5PRpq4anRqG8Gm+NkOXr0aE3PaS3qtNJzemDKLVG0sSOwyP+/dt6Y6alphnOzplMDz2lmZgZVnXdO33/o8Lz8h5msO1slV6B1LL4w7Ufx3JxUKs3w8ITpVMdzCofD9PX1ralzWos6LXVOkUhk3v7rcU5LIaXqDy66ssj7VfXvS7S/V1X/oewdudtsA26eMwpF5DLgIlV9p/f5bcCLVPWqgm2uBt4O3IcbsfokcCnQDvxaVT9ffJxdu3bp9u3bK+namua2/TN88+Ex9k35U8LmglP6+OirrepZvfjXXYe58bEJ+jtbS6b82D60gScnapO/7WOvOY3zT+qryb6M8hgeHuaUU07Jfz4aSfF/fvYMJ/a1c9v+WQCetWkDT03G6etoJZR0vwPnbe3h/sPzo97m1pvjC793FqcPbqj/SaxjivUzmo9GaLh79+4HduzYcV6pZZVGj/41sMBowx2urMhoWwmqei1wbVHzL+t93LVETt0hUmPtEU5meWI8BkDLImNdNiTe3GzatCn/PpFxeOSoW/1gS087sHiQUanycTYc2ngK9TOaE781LMtoKwg0CIjIbzL/3nAaUIvEJUeAkwo+b/XajBrh5BS/H9tmMNaPI+EUT3letJZFHsgTy819MlY1oVCIri63ZujTk3HSjpJTN0cbzL+6F/sOGP5RqJ/RnPitYbmetrkAhA7gywXtCowCf1aDvtwHnCkip+Iaa5cDb6nBfg2PfdMJsjn1NVVayXqYRk04NJvMP7QX86LMJhcOmRrNQyZz7Pp5ZvpY+pzCa3o2mVnQlrVydauCQv2M5sRvDcsy2uYCEETkelX9g2oPKiI3AK8ENonIYeBvVPU6EbkK+DEQAL6sqo9VeyzjGIm0w0g47XvaD6M+PGhlidY8czmiZuIZfrFvhjM2LYxkG/eKwRca6DPm4V4V+J3jy6gevzWsqIxVLQw2bz9XqOrxqtqmqltV9Tqv/RZVfZaqnq6qH6/FsYz55FT9NdpsyKYuTMUzPFxQW1IW+UdbQYrmZi6y7O6DIR735i/C8tUpSi21S7Hx+J3jy6gevzWsyGgTkWtF5CVFbS8Rkc/VtFdGzYmnHcIpp+4P7Zdt27jkcntQ1IeHRyJMFnhTFkuuazZbc9PV1cV4NM0Rr47o3PVUeF2XusZKXff2XWg8Np+t+fFbw0oLxl8B3F/U9gA292zV8+hYlGemE1SS4mUlvO3cLfx45/N41ZkDJZfbg6I+/OipqXmfkxkbAl+LBAIB7jscLmhxTTS7rpqDQKB0/kSjefBbw0qNNi2xTWAF+zEaTDztPsTrOR/5/JN6OaW/AxHh7eceX78DGQt4aGR+YXhzaa5Nhsdn+elT0+yfdvMszgWcFP4YK3WJ2/Do6iAcDi+/Ug04MONPHs71QKM0XIxKja07gI+JSAuA9/cjXruxykllczX9Rf5Xv7WN55/Qnf/8/+04NZ8fbHNPkPZWs+UbQaLEUOhiedqM5mZSN3AknMpHg+aHRwvWWanyi82DNGrH0NBQ3Y/xxHiMj/70mbofZ73SCA2XotKn6ruBVwFHReRe3LJSr6Y2KT+MOhJJZRmeTeLUaHj0H197Jq84rZ/nndCTbys20j70m9tK9MOKWteaXw2HFrRZjq61RyztcPcBt0RO/jLOe9qOrbfSK9zs/PozPT1d92P8812H8nMejdrTCA2XoqKKCKp6WETOxa0TehJwCLhXVW0CzSrnaCSNAI+PxZZddykEeOf5J/CcLa6H7cJTN/KV+4+W/I1+wSkLSxylLN1IzflJ0Xw2sKGvtch/PTlZ9zmpRn2pt37pbI69PpUoXC/4fQ1WWsYKYAdu4tvNqvpaETlPRHpV9b9r3DejRoxF0nljqZqao68/exNnbtrAa541mG/b2tfBH77geO44MFttN40VMB3P8GDxfDZjTbJ/KkFnZydKJP/jq1T0qLF6qffQ2tOTtakrbCxOUw2PisifAV8AngYu9JoTwMdq3C+jhoSSWQ7OutnTcyu8u3e2Cr995uA8g22OzT1Bju8Jltxuxxn9KzqeUR73Hio9Kba7vf4RTmYoNI5sTjkwk2QyHCOScsh4c9oOzbrDYCuRong41IZH68/Y2FhN9xdKZkkXjF48MmY/4OpNrTWslErntL0HeJWqfhKY+6Y8CZxVy04Z9WOlD9pgQDhpY3vJZdv6O9jY0VZy2XO3dJdsN2rDaKT03JVQwspVrSV+tGeKtJNjqkjuX4/aQ7qZ6O6u3f3wyfEY1907wj/ddYhoyr3e903a0Gi9qaWGK6FSo60Hdx4bHPtx1wZYFeomYaXOkXOGOuhsK+29OX1ww6IZ2XecUTpfm1EbfvxU6UmxKaf+bjDzzDSGI6EkDx+NcDiUWjBX8di0h+qHxUzO5uHugyEeHImwbzpOOpvjtmdmAZiw2s5rnkqNttuBDxS1XQ38ojbdMerBXE6najijd+lb+in9C2sgwsKIUqN2jIRTTFlNyTXPE+Nxnhx3jbJcrnQgz0oKwluKj8YTjVbvGT0aTnHPwRBff3CUpz3P2twcx701MN6NpamFhtVQaSDCnwE/FJE/BnpEZA8QAV5b854ZNWM8Wr0j9IWnbV5y+asXqYBg1I/DoaSvx7c5bfUnnMzOexAHWluBhWlzaiGFGXH1Z/Pmpe+jy6Gq/NiLFk8XeNNnEhnCySxFmWCMOlCthtVSacH4o8ALgTfhlq56O3C+qloV3FXMvukEIhBbpB5lOXRmls4C3RVcfOL7ib2l58IZ1fFfTy5M9WGsLaYTGfZPJ/LTD7LZ0nMVM7UYDrcnfd2ZmJioavsnJ+LMJLLEC8rUKa7+yWwu/z2wqQv1o1oNq6XS6NHfBLap6r3AncCfAF8SkS316FyJ4/+uiPxfEfmWiPy2iLxSRO4QkS+KyCsb0YdmxPGGTlY6Of3iswaRKu4C523tWX4lo2ImauBBNVYv2Zzy4JEIR0Ip82quEaq5j07E0vmpLpHUwnt5LabBGMtTjYa1oNIJR//KMd/8Z3GDEBT490p2IiJfFpFxEXm0qP0iEdkjIntFpHjuHKp6o6r+MfAu4M3esaNAB3C4wnNZN+QKM6ivgDf9j+MYGFj58Oc5FkFac54YjzHp86RjsyPqy2gkxX2Hw8Qzx8rPtbauJLVmeZhzpv6s5D46Fknz1ftH+Kc7D5FIu4/fZ6aPTY2wurKNpZpnYS2o1Gg7UVUPikgrcBHwv3C9bS+pcD9f9bbPIyIB4PPAxcDZwBUicvYi23/YW/cOVb0YuAb4aIV9WBdkHNeNfnSR1BDLERA4sa+jKpfw9qGuFW9rlObJ8ZjvRpM9GOrLHc/MEk/n3NqyntiLDY8azUGl99HRSIrvPjLGU5Nx7j0UzkeHFl57cz/IC4fI/fYGrWX8Hh6t9GdbWEQ2A+cAj6lqVESCuB63slHV20VkW1Hz+cBeVd0PICLfBN4gIucB5wKfwa11+kngVlXdXbDtDFBy4tT4+Dg7d+6ktbUVx3G49NJLufLKKxkdHaWrq4tAIEA4HGZoaIjpabeu39DQEGNjY/l8LNFolM2bNzMxMYGIMDAwwMTEBL29vTiOQywWY8uWLYyOjtLW1kZfXx+Tk5P09fWRTqdJJBL55cFgkJ6eHqampujv7yeRSJBMJvPLOzo66OzsZGZmhsHBQSKRCOl0Or+8s7OTYDBIKBRi06ZNhEIhMplMfnnxOX3v4SMkEiniaQdaK5/T9sZnbWBkZIRgMMjw8PCKz6mQo0ePVnVOa1GnSs7p6Ng49w4nF40kbBRT09MM66zpVIdzat/QxX3PTJKlhZxC1nGNtayzMs2FhR6ZVGr+D7l0OsXwsOlUz3NKJpOkUqmyzilGO7tGEsyEEkzEXPV2H5rmrON6mEkc87LH4zFy0saPHztyTExVZmZmTKc6nFMmk2F4eLiu57TktVxJHS0RuQa4EggC71HVb3rz3D6pqi8qe0fuvrYBN6vqOd7ny4CLVPWd3ue3AS9S1asKtrkaN/jhPuAhYBx4DbAR+IKq/rL4OLt27dLt27dX0rU1xV/e8jQBEZ6ajNPTHmAkXNk8qE9fcgbPO6GHyclJNm3atOJ+/PaXHsy//8k7n7/i/RhupNgHb93HVDxDKOmf5+X//PZpvOjkhfVljeo5OJvk//zsGTrbWnhyIk5fRyuhZJaNHS3MJis33LqDAaLp+T/azj6ui8fHj9Ui/sobn82JfR3Fmxo1pNz7qKrywycmGZ5JMh5N8+RE3NO/lZds6+OWgiCkl23bSCSVZUNbgF0HQwC0BYT/esfz6nUa65pqn4XlsHv37gd27NhxXqlllRaM/5SIfB9wVHWf13wEeGeVfSz3+NcC1xY1f68Rx25WQoks/RvaiKQcupeI8FyMZ23aAEAsFqv7F9Uoj4yjhEtMRG40fg/PrmV+8tQUCkx6efjmjHNdQT42KFcrG1KrN+XeR+87HM7nYDw4m6z4x5kpWT/8fhZWPKtVVZ9a6nMVHAFOKvi81WszquCZmST9G9zR65Xc7jd4ht6WLQ0JEDbK4MmJGPG0Q2uL3ZrXIkfDKe4/HEEEpouSJ4fTKzTaLPx0VVDOfTSSyrJvyo0EPRxKcTSSLlpeeppLYV1pm9NWP/x+Fq6mdPX3AWeKyKnePLnLgZt87tOaYK6gcKX37Uu2HysOv9w4+3Kc1Ge52mqBk1MOzqZQ/Pd02WOhPnzv0XGm4hkiySzFjrVaam4F4xtPOffRBw5HSGRyoLhBKAUozCsQf6x1PiZl/aj2WVgtvhhtInIDsAs4S0QOi8hOVc0CVwE/Bp4Avq2qj/nRv7XGMzNuePhi9UEX47ytvfn3bW0VxZoswNJ+1IZExiGdzZFTuzGvRQ7OJPPzl+pdPta+P41nuftoNJXlSLiySH9Vq07SSKp9FlZL/ZL+LIGqXrFI+y3ALQ3uzpplbkjk2N/Ktr+gYJJ5X191E85/4/hubt1jGfyrJZ7JcTiUJJdTwgt+cdefrmCAWHrllTWMpXn4aCRfRzSwmsZBjJqw1H1UVblrOMRsIktHWwvDs8l5parmKK43LHLsVdhm1Idqn4XVUnFFBBE51Xt/vIh8TUS+0qiKCEZl3P7MLEC+5El4kbkQpXjdszcRKJgzNTk5WVVfCr12xsq588AsE7HMvPkrjeKCU/r4jzefnY/+tQdD7fnGQ2P5H1ktNfSFlfy2FA+P1uxoxmKUuo+qKhknxwNHIlx71yF+8PgEdx2YJZ52SgYcFRttpTxtpmX9qPZZWC21qIiQo8KKCEZjKC5rkqrAM3PpOcfN+1ztr4veDl+cumsKVeXXR6PE0k7dh85K8dFXn0Z3u6vjX77iFLZ02zzFWnI4lGQqnjn2AG70k9ee9HWn1H1UgVv3TPHfe6fzJQcPh1Luj6IyrvO5+a02RNoY/Pa0VfokLayI8BrgFCCNm/TWWGUcCa2sCsKGthZOLAocSKetzqXfpB3lvkNhhrqDDT/2uSfOrx/7qjMHFvziN6pjxJvLVI9B71L2WLbI8jebrf6Uuo8enE1y76EwwYDMM7wWs9lKGWfF2rWYG7xu+P0srNTTNlcR4RXA46oa9dr9nZlnlGSlpauKvWwAiUT1xYg721rY7IPBsVbYP53w6sg25if1pq5jl/Vvnt7fkGOuV0bCKX7wmDvsEkq4Q2L1zuhyYCa5/EpGTSm+j8bSDo8cjTIaSZPThUZaqWt9sav/6al4/r3ZbPWjFs/CaqjUaPtn3NQcX8et/QnwUuDJWnbKqJ6Mk2M2sbIErJc9d6HRVovcNC+0eW1VMRJ2U33MrFDXcpnTv7+zldMHOwE4baCzrsdc74xF0/n5S7N1qHJR0mNT9FnM11Z3iu+j9x4KLaG3lG3EKaZfo2iqPG2q+ingVcBLVfWbXnPDKiIY5TM8k1yQ46kcPvrq0/IJdQupRW6aF5/cx1jUhllXykHPM5KsU9TonGdnW38HAxtaueolJ3H1S9181yf22vy1euHklP1TC3+91/IhnMj4W6fWcCm8j84mMkRSDk+Ox10Peon1SznViw03KXgZ9cfvPG2rqSKCUUPuODC7ojlH/+P40vnUgsHqhzVfuq0Pbqt6N+uWh49Gl1+pCl62bSPDM0leflo/O84YyEcPnzbQWdKQN2rDXcOzRNNOwyeSFz/kbUit/szdR1PZXL7u60TM/SH7wOHwvHVFSgyXslC3Ul8bk7J+1OJZWA2W8mMNks7mFkwyLpeuRR7OPT09JdsrobMtwPtefnLV+1mPjEZSjEfTdX2wn7e1l7/asY2O1pZ56V7e+ny7vOvJj/ZMlYzsrndaFws2bDw9PT1knBx7JuILUnWUyslWajg0VbyeQq4odbqVsaoftXgWVoOl/FiDHAmnVjSE9qKTFp9zNjVVm8S4Lz91I7MJizqslF8fjeaLh9eSwlv7aQOdbOtfOHftvK3+3qTWMkdCKfZMxDk4m1xgpE3E6nud2GO98UxNTZHI5Ng/nSDt5PKG1mL2eekh0+XNbdO2ftTqWbhSLOXHGiSnuqLJ6v/7xScuuqy/vzbRg51tAZLZHImMQ2ebDbmVy32HwsuvtAIUOHljB73tAY7vLe32N53qx90HQ+TUnYPa097Y/7PVHm08/f39PDYW47HRKOFUlhdu7XXno5X431ciR/H8xxarplE3avUsXCmVGm1zKT/OwUv54RV3t5Qfq4icwoGZysOSt/Z1LLoskUjQ21ub6M/+zjYmY2kCIgRb7e6yHFPxTL66RT246FkD7DhjgJ52S4DcSBIZh8fGYjg5ZSyaprvdInTXOtPhGF++bxZHlVja4aSN7j13sdJwpYLJzLb2l1o+C1dCpXfpuZQfQeA9Xpul/FhlxNMO4QrTBvzja89ccnkyWducTpu6goxH0/R2tNJhhtuSJDPOsWGUOuz/BVt76d9gv7sazaFQijsPzPrdjTxmDNSXnCo/2Rcimc3R5iXS3TMRR2TxND6lhkKLDbm52Wyl40+NWlPrZ2GlVGS0qeqnROT7gKOq+7zmhqX8EJHfBX4H6AWuAxLAW3HP42xVfUkj+rHaGQmn8kWny+HCUzfynC2lo0bnqEdumuO6g0zFM2SdXL48krGQJ8bjy6+0Qrb2tXOq5WDzhXsPhuZ99jt61KgfqsqP9kxBcAMikXwiXSenS+pe6jbulMrVZjWsGkZT5WnzUOCtIvJvIvLXAKr6SCU7EJEvi8i4iDxa1H6RiOwRkb0i8oEFB1a9UVX/GHgX8GZVvUNV3wXcDHxtBeey5ggls9x9MEymgujRd3u5uJaiXrlpBje0ocBkzPK3LUZxDdla0dMeKFn9omzsObFipuKZBYEljX7wWnLdxnEknOKBIxEiUTfNh6qSUyWni88lLJnyQ0ukakEW1LwyLeuH33naKk358TrgAWA7MA2cBdwnIq+v8LhfBS4q2ncAt8rCxcDZwBUicvYi23+YYxUZAN4CfKPCPqxJUtkcI+EUmTI9bV+/4jllFXPv6Fh8vlu19LS30tfRylgkTSJTem7HeuXugyHSTu0To/a0BxjqCnJKfxW62nNhxdy+f4apouhQs4HXJtPxDL8aDjEeTdMSCLipPsBL+aGLJkFXXZj2RVmYziOnusBIs0uzftTzWVgOlY5JfQJ4g6r+Yq5BRF4J/AtwU7k7UdXbRWRbUfP5wF5V3e/t95vAG0TkPOBc4DO4UaqfBG5V1d3eeicDIVWNVHgua5LpeIYj4eVrjm5oa+Hbb31u2YEAnZ31HUJrC7SwuSdIKJklkkozuKFtXq6w9cq+qQTpbO0f5299/hZOG+jkucsMiy+JWRkrYiae4ZHRGKNF1UEa/e+0q6v+qCp7p+IcmnXnQbUEWhHJMBnLEAwIOdzI4cW3X9hWKn+flnLBGXWh3s/C5ajUaNsK3FHUdqfXXi0nAocKPh8GXqSqfwdcDyAiV+OW0eoTkTNU9YvATuAri+10fHycnTt30traiuM4XHrppVx55ZWMjo7S1dVFIBAgHA4zNDTE9PQ0qsrQ0BBjY2N0d7sPtGg0yubNm5mYmEBEGBgYYGJigt7eXhzHIRaLsWXLFkZHR2lra6Ovr4/JyUn6+vpIp9MkEon88mAwSE9PD1NTU/T395NIJEgmk/nlHR0ddHZ2MjMzw+DgIJFIhHQ6nV/e2dlJMBgkFAqxadMmQqEQmUwmv/zeo7ll57O990WbeHZvjlw2zaGj5Z1TLBZjZmamIecUDc3yyJE0Q0NDZMKTdHd3rzmdyv3u7R6eZKC79jeJHSe1k0zGGR6eXvE5jY5NEw3kKj6ntahTJed0x0iGdCZHMlVktK2k7lwVOLn5HtxkKsnw5IjpVMNzGk+18NShadKZANlMhsdH48TSAbI5dV/ZxUcWUun0giHzXG6h1z2RSOBIK06BRz7rZJmZmTGd6nBOBw8epKenp67ntBRSyTwKEfkF8COvBulc218Cl6jqK8vekbvdNuBmVT3H+3wZcJGqvtP7/DZco+2qSvZbzK5du3T79u3V7KKp+Juf7mfXcKjksvdeeDIXnTW4ov1Go9H8l69R5FTzpbgGOtef5y3j5PizHzzFCb1B7jxQWtOVMNTVxtevOKfq/UzFMgx2WdRppfzdLw4QSmYZCacYjRwz3E7e2MHB2cZFpm1oayFeUJP0hivOMT1rzG37Z3hwJELGUY6EUmQdh6emjmm8ta+dw6HSIyM97QFiaWfB8GlAoHDK8otO6iWWcRgJp5iOu1Gomza08Y23VH+NGwtpxLNw9+7dD+zYseO8Ussq9bT9KXCTiLwb1yt2EhAHXlddFwE3CrVwRvxWr80ok3Ayy+4j80eJT+xt549fdAIXnNxXVWmTSCTScKOtRYShriCqynQiS06VDW2BRUttrTUeHImgqiXL21RDreqIWoqByomlHR45GqWnPbCg1JxFAK4tZhMZnJwyFcvQ480bzjrzPWvLOVdX6ny1b1L98ONZWEilRtse4NnAi4ETcOeY3aOqtai3ch9wplfb9AhwOW6AgVEGsbTDf+weJeXlAHrjc4/jNWcNcnxPe032n077F90pIgx6ecRiaSdfYHmte9/2TSWYiGXKChSphAtO7qvJfixCrXIeGXXLkXW2tSwIFkpkah9wYviDk1MmYxmenoyTU8g6OUSYN4QJK6svW6qIvFlpjcPPZyFUYLR50Z1RYKOq3lnNQUXkBuCVwCYROQz8japeJyJXAT8GAsCXVfWxao6zXoilHW5+YpJYOsunLzmD3zi+u+YFg/3OTTNHV9D1tKlXqiunrr9nLRpwoWSWjJOrafTohrYWdpzhbxmW9UrGyfGzp6cBd3jLKTLa6lFbtlxeZd+JmjIVz/D4eIzbnpllW38HwzNJNgQDBNraOFa+e+ncfIstW5Bc1/tc+CNqbd0JVxd+PwvLNtpU1RGRp4BBqqw1qqpXLNJ+C3BLNfteL2ScHCGv6kE8k+ON/+M4WupYPHB0dJRTTjmlbvuvFBFhwPO+zQ2fzg0vdQUDTV8v87HRKJGUQzanpGoYPXpKfwcnb/Q3ZH29cjScZsyLGJ2MpVfVj4zXnT3kdxfWDKlsjuvuGyGZzZFTxcnBbDJLVzBAOl2c5mXxa7vc2/nc18imKzQGv5+FlY67fB24WUT+CTe6M/8tUdX/rmXHjPkUGyaBFmFTV+kC3/XA7zDnpSgcPgWIprL5ZL2C0L+hta4GbT2YiGWYjmdwlJp42vo7Wzm5J8AfvXhrzbywLeJ6i1aT8bFacXLKXcOzZDwt046uqoLNzz6ua0HeOGNl/Gp4lpFwKl/tIKdKNO0wPJukL1icY63645mp1lj8fhZWarT9iff3I0XtCpxWdW+MPDlv+K9wcnK/j0OAwWDjDMRq6W5vpdubylds7IK//8dyyKly/+EwR73IwlS2eqPthN52nr+lnWcf11X1vubY2NnKdCI7z2A2SuOocjScnhdUUhyI4BenVpNg2ZjHaCTFfYcjRFNOvuKBo0rWUdKiIPPzYtYi9mQuWa9Zb43B72dhpbVHT61XR9Y7qWyOaKogskhc78hq8RCFQiE2btzodzcqptgLVzgXDlxPXFtAaj7ZvxqGZ5IcjaSJp93vw0QNPCDP2dzFS4Zq60kREYt4LJPdRyIkss688nJ+/ueef0I3eybcmra/dcaAjz1ZO2ScHPccDJPLKUfCKYa62tyKBzlX6xaB2aLC8LW6fhY8JVbHY2NN4vezsKInlYhcC3xTVX9V0PYS4E2q+p4a923Nksg4xNPHvCeKEgy0rOocSZs2bfK7CzWhcC7cHMlsbt5wKuCrIffoaJRQMkushiW9nndCD0P9tZ/n55bj0ZoHvqwl0tkcvz4aJZZ28sOjfnPBKRsLjDYLQqgFh2ZTxNJOPsDEybmzzOYKvCcyOY7raiWaOWa4LWWylWvPKV41hIJL0K7G+uH3s7DSp9IVwPuL2h4AbgTeU4P+rClyqswmsgsuvo621W2glSIUCtHVVbuhtdVER2sLHa3zXd6pIkNubpJvX0crbYGKSvZWxHQ8w/BssuZJVs/b2svIyEjNNRzc0MZUPNPQ+ZXNxkwiSyiZZTqeIbUKhkTP2dLFib3HUgENmXZVMx5Nc9fwLKrHjDRHIZ525qf1KK5wsMTXoaLfQYoNjzYIv5+FlRptysIi84ESbeuKxYwzBDZ2tK7q+VPlksmsr0nK7a0ttBcZcqrKbDKLk8suWL+zBkl/VZVf7JvJe0BqxavOdIe/6qFhiwiCkM0prWvge14P7j8SZiqeIZXVmqZvWSk7CoZDn39Cj489WTs8PRknnMyyIRhgTuJIKktO5xtmxXnZVpKnrRj3RyXz3Gtmv9WH4ZkE+PwsrNRouwP4mIj8parmRKQFNyihuB7puiKbU/rWiHG2GH7nplkNiAj9naU9pPG0k/fM5dcvGGrtaQ8sO4T42FiMHz4xyUyidjeFl57Sx5UXuKWB66XhYFcbRyOpmiVyXkvMxDM8NREn4yiZXG7enLZGEgwIaUc5qa+dC7e5Q6MiwllDG3zpz1piJp5hKp4hm1NiaSdf+3nOWMsVWG0tLQGgtoa7pfpoDDPxDCPhNOc2S542j3cDNwNHRWQYOBk4Sm3KWDUtwToOl60W/M5Ns9rZEAwsWh4qlc0xncjmf/4qmjfophMZDodSjIRT3LZ/hpFw6TqEK+Hiswb54/NPyHsA66nhcV1BM9xK8MREjPFo2k2SXMN8e5Vw9nFdJLNuXsfPvvZMejta80Nvpw2s3lQ+zUAqm2Mk4qb3cHJwOJRc4HEuNNEy2crKWFWE2W51YyaR4dde7szR0dnmydOmqodF5FzgfNw6oYeAe1XVf5+/UVfW6ny2RuAOtZY27Ae72tjW38HRSJqzN3dxaDbJgekkw7NJxqNpIqnsvKLe5dAdDPCCE3v48wtPntdeTw0DLZI33AY62xY93/XEaCTFbftniXqT02eTC4fV60kwILS2CK9+1gB3HZjlWZs2sLFzfiT1KQXpPsxjUznT8QxHw2lGwmn2TMToag8scKQVetq0yNle0+jrtTvQ4yuJjMNDIxFiaTdZst/PworD4zwD7W7vZawTAoHmrjCwmmkLtHDyRrdSwVJzjOaKx88msswkMoxH0ygwEk5x5qYNbO4OsqUnuGigRL01DLQIx/e0MxPPEEq6+dvW8pSB5dgzEWc6niGRyZGoYSRwuXS2BfiTF59IIpvjjMENvHTb/JqzrS0yz2izWrKVkc0pe6cS7JmIMxXPkMkp6axSXIzFWTwOgZy6peUq/WFWjBYFIpiStePho9F8kuTZRJZAwN+8hqsnOZWxqgmHw/T3W2oAPxER2luFzT1BNvcE2V5hotxGadjvpVSZimfIqdLWIvM8POuBmUSG+w+HmUlkOTibpC3Q+MfoWUMbCAZaeOXp/fz33hm29h172LS1CMd1B1dNHshm5NBskl/sm6EtIGQc1wsTTmUXBCQVBhvkisZDVbXCMNGFlHLWFeeDM1bGWCTNWCRNVzBATt3rOhxO+/osNKPNKIuhIatN2Ow0WsO5pMZpJzcvSCPQImzsaF3Tud0eGoky5XkcgYYGIPS0u5HMLzixh9MHO2kRyUcQz3HqQCcbO+32v1JmEhnuPRQmlnboaG0hmc2R9cpWxdLzvaqFRpW0tDCvYDzVz2srtXmmppPl1ifRVJanJ+PkVFGUaCpLKOkwNLTZ137ZVWuUxfT0NBs2WKRZM+OXhsFAy7w8bhknx3R8oSegRaBvFVUBWSnhZJZ7DoY4HEoRbvA8NoD2QAs7zhjg9845btF12gLCmZvsel4pvxoOEU1lvWTJbiqXbM4NMJqIzI8iL/S0Obn5w6CqC+e5rZjmvmxWFWORNPunE6SdHE7OnZZyOJQim8v5/ixsKqNNRH4X+B2gF7gOt2j9R4Ap4Oeq+l3fOrfGsXJFzc9q0bAt0MJg18J5d07OLTG22Hx4xS1O39u+etPrpLM5fvTUFI+ORRmPNj6f05mbOvmt0wc4e/PSQ+edbQGO67akupWiqjw4EmE0nCKZzZHJKZmckvWiR0t9eZ2C667Y45pTpaVWl+XquLybnmQ2x2gkRTiVRXA9obNe6cOMo+Ry/sZd+mK0iciXgdcC46p6TkH7RcA/4Sbs/ZKqfrJwO1W9EbhRRPqBvwceB/5ZVe8QkZsAM9rqhA2PNj+rXcNAiyxbfD6bU8LJ7JJDSoVRkCJCVzBAe0DqPhybyDh86d4RomnHF4OtReCaV2yjr7OVvjJKsK0SG76pOBJO8fh4nIlYhraAkM7m8pUPQsks3SXS/hT+n4uzviiLZ21LVzikbiOiteHgTJJDoRSBFre28kQsQ29HgGzOvf9s8vk+6pen7avAvwDXzzWISAD4PPBqXA/afSJyk6o+XmL7D3vrHgb+RkReDwzWu9PrmbGxMcvT1uSsBQ1bWyQf6FAOOVXiaYdYavkn2pyxNxdFKQKdbS10tLYsavCpF1H22FiM2/bPcNszs2UZTLWktz3AeVt7ecNzhji5v/zItt/ZPv+WaSk/liaZzXG3Nyw6Z6ClHXdodDLuGunZEpbT/IoIC5cFFvm3p7LleXTmvpmFX9F+m6+4IsLJLHun4swkMnQHAzw2FqO1RRiNpEg7ipNTxsbGOHXbNt/66Iuyqnq7iGwraj4f2Kuq+wFE5JvAG0TkPOBc4DPACPBJ4FZV3e1td6Vn8H2v1LHGx8fZuXMnra2tOI7DpZdeypVXXsno6ChdXV0EAgHC4TBDQ0NMT0+jqgwNDTE2NkZ3dzcA0WiUzZs3MzEx4RYcHxhgYmKC3t5eHMchFouxZcsWRkdHaWtro6+vj8nJSfr6+kin0yQSifzyYDBIT08PU1NT9Pf3k0gkSCaT+eUdHR10dnYyMzPD4OAgkUiEdDqdX97Z2UkwGCQUCrFp0yZCoRCZTCa/vF7n1NrayvDw8Jo6p7Wo01LnlMlkiEaja+qcytUpuoJzGjl6lGj7BjIqRCNRBgcHmZmdIadKd18/Tx+eYCITIJlVHh+PIwHXmAw1cB7bQGcrf/uyAaaiKU7rc6/RlerU2z/Io08f4fiBXrueis5pQ3cvT4xHGR6LIsFOZqMJsu0BUlmHyYL5mdkSZcqKE+oWU20pq0QyQU7ayDnHjtNKjpmZmXWnUzXntO/oJMGuPvYdnSacyrJ5Yw+js1E2drQSyUAyk6G1tY1UKs3w8HBdz2kpxK95Lp7RdvPc8KiIXAZcpKrv9D6/DXiRql5VsM3VwNuB+4CHgB8BHwK6gC+o6p3Fx9m1a5du3769viezDpiammJw0JyZzYxp6A9OTolnHKJph2jKfU3E0kzFM3QFAzzl1ZqdimeIpNwySIdmk2Ryygm9QXrbW0lkcxyaTbJ9sJ3zTxlgS0+Q0wc72dQVrLrmbSGjkZSlAikim1MeHomwZyLOkxMxettbeeBIhK197QzPJOclTW6Rhd605fKwldqmEs49sYdkxp2HNe2l+njNswZ438ub26veKJycksrmeGI8xuPjMYZnkmxoC9DbEeDBkQgDnW3E0g6JbI6RcIp/u/hEthy3qa592r179wM7duw4r9SypvKhquq1wLVFzf/Lj76sN6LRqD3wmxzT0B8CLUJPeys97a1QZX324eFhTjmlfrUPN3cHmYxnaCkIRdwQXHqIeC2TdnLctn+GB0eixNIOk7EMHa0tTMUzCAtTa5QyvpabmlbtXDRh4dD2GYMWGVwu7o+lLMOzScYiaTI5JZF12JBrIZHJ4XQojheEkMjkiEajUGejbSlWk9F2BLc01hxbvTZjFbB5s7+5aYzqMQ2bn3prKCIMFaRnUXWLoBenaJkX7FFmrol8zV2B9oAQbG2hraX+ASIrIafKnok4B2aS3PHMDPF0jpYWN4pw7v8TSmbLSrOx0uHPnvYAkdTSQ6vzAncK+vIbJ3Sv6JjrjXja4YnxGC0izMQzRNIOiYxDKKFs7GhzjbacEkm5pegAho5bPJVOI1hNRtt9wJkiciqusXY58BZ/u2TMMTExwUknnbT8isaqxTRsfhqtoYjQ3d5Kd3vt9unmvcqRyOSIFLuhXLfREh0qeF+83hIG1GJGoqprfqYdZTqeIe3keGgkypFQikdGowRaIJx0H+SJjJvi42Rv3lq9E9guZ7DN9b8UPcHV9GhfncTSDruPRJj2pinE0jkiqSyhRJa2gJDN5YhnHLI5mIhl6Gl3pyGMT0zS133yMnuvH36l/LgBeCWwSUQOA3+jqteJyFXAj3FTfnxZVR/zo3/GQlbjr2GjMkzD5mctaBhoETpbAjSqslnOq9mbzOQIObn80G/WMx5nk2406FyJKVVlY2crLzypN58cuS0gPDke5+Bskm39HYSSWYIBIZHJcWAmuXQH6mjbverMAW5/ZtatMOKd12XP9dcTtNpxcsp4LM2DRyLkFGKZHCJCNJ0lknLctnSOaNoh6XnaUtkcHa1ebkmfL0G/okevWKT9FuCWBnfHKIOBgYHlVzJWNaZh82MaVk6LCB2tcuyhW0Q9/ZY5dRPvJjI5UtmcG7lIK8lMjkQ2hyrMJrO0tQiRVDaf821jZyuJTA7BTTsz1B3k0dEoY9E0qnBcd5DLnnsck/EMGUfp62jlcDjFGYOd/N5zhggls/nScYLkE1MHAy20BWTVDkvXi7Tj/i/DKYfHRqOknByTsQytLe6waAsQTTuEk1k621qIZxxGI2kUNzcf4FW/gI0b/a3BbT5UoywmJiaaPsfXesc0bH5Mw+aiRYRgwDWWAIanjnLWCvV78cl9C9oGNrTxrBLlyDYWuTFVFUddw6PUsHR+vmEjKRgKb2mBthahNeAOYdei4omT8/KqRdMcjaRoEeHeQ2ESGYfWFmHvVILnbO7i3kNhth+3gX1TCULJLK0tbURTDrNeJO5cCp+5HHwTk5MMbawyoqgKzGgzyqK3t9fvLhhVYho2P6Zhc+OXfiJCq0BrA4elK8GZKwfm5EhklHylqMI5jkXzGXPovCjnRNYhnVXCqSwtAuPRDIEWYTaRIeXkGOoKMpPIkM4qJ21sZ3N3kIyj9He2smciTiTlsKWnnRHPszaTmF/VZK4bXd3+GWxgRptRJo6z/KRYY3VjGjY/pmFzY/qVJjDnXVtkCLs8lrdGd5yx8ukFqkpOYXpqcsX7qAXV/IeMdUQsFvO7C0aVmIbNj2nY3Jh+zYuIa1jG43Ff+2FGm1EWW7bUL6Gn0RhMw+bHNGxuTL/mx28NzWgzymK5emjG6sc0bH5Mw+bG9Gt+/NbQjDajLG688Ua/u2BUiWnY/JiGzY3p1/z4raEZbUZZfO973/O7C0aVmIbNj2nY3Jh+zY/fGprRZpRFNptdfiVjVWMaNj+mYXNj+jU/fmsoi9UuWyv8/Oc/nwCG/e5HszM9Pb1pYGDA31hnoypMw+bHNGxuTL/mp0EanrJjx46hUgvWvNFmGIZhGIaxFrDhUcMwDMMwjCbAjDbDMAzDMIwmwIw2wzAMwzCMJsCMtnWKiJwkIr8QkcdF5DERebfXPiAiPxWRp72//V67iMi1IrJXRH4tIucW7Ovt3vpPi8jb/Tqn9YqIBETkQRG52ft8qojc42n1LREJeu3t3ue93vJtBfv4oNe+R0Re49OprEtEZKOIfFdEnhSRJ0TkArsOmwcR+XPvHvqoiNwgIh12Da5uROTLIjIuIo8WtNXsmhORF4jII94214qIUCtU1V7r8AUcD5zrve8BngLOBj4NfMBr/wDwKe/9JcCtgAAvBu7x2geA/d7ffu99v9/nt55ewHuBbwA3e5+/DVzuvf8i8Cfe+z8Fvui9vxz4lvf+bOBhoB04FdgHBPw+r/XyAr4GvNN7HwQ22nXYHC/gROAZoNP7/G3gD+0aXN0v4OXAucCjBW01u+aAe711xdv24lr13Txt6xRVPaqqu733EeAJ3BvQG3AfInh/f9d7/wbgenW5G9goIscDrwF+qqrTqjoD/BS4qHFnsr4Rka3A7wBf8j4L8FvAd71VijWc0/a7wA5v/TcA31TVlKo+A+wFzm/ICaxzRKQP9wFyHYCqplV1FrsOm4lWoFNEWoENwFHsGlzVqOrtwHRRc02uOW9Zr6rera4Fd33BvqrGjDYDz0X/fOAeYLOqHvUWjQKbvfcnAocKNjvstS3WbjSGzwF/CeS8z4PArKrOZYAs1COvlbc85K1vGvrHqcAE8BVviPtLItKFXYdNgaoeAf4eOIhrrIWAB7BrsBmp1TV3ove+uL0mmNG2zhGRbuD/Ae9R1XDhMu9XgiXyW6WIyGuBcVV9wO++GCumFXeY5guq+nwghjs0k8euw9WLN+/pDbjG9wlAF+bhbHpW8zVnRts6RkTacA22r6vqXEG1Mc+9i/d33Gs/ApxUsPlWr22xdqP+vBR4vYgcAL6JOyTzT7ju+1ZvnUI98lp5y/uAKUxDPzkMHFbVe7zP38U14uw6bA5eBTyjqhOqmgG+h3td2jXYfNTqmjvivS9urwlmtK1TvHkU1wFPqOo/FCy6CZiLgnk78IOC9j/wImleDIQ8V/KPgd8WkX7vV+dve21GnVHVD6rqVlXdhjup+b9V9a3AL4DLvNWKNZzT9jJvffXaL/ci204FzsSdSGvUGVUdBQ6JyFle0w7gcew6bBYOAi8WkQ3ePXVOP7sGm4+aXHPesrCIvNj7TvxBwb6qx+8oDnv58wJehuv+/TXwkPe6BHd+xc+Bp4GfAQPe+gJ8Hjeq6RHgvIJ9/RHuxNm9wDv8Prf1+AJeybHo0dNwb/h7ge8A7V57h/d5r7f8tILt/8rTdg81jHSyV1naPQ+437sWb8SNRLPrsElewEeBJ4FHgf/AjQC1a3AVv4AbcOcgZnC93Ttrec0B53nfh33Av+CVDK3Fy2qPGoZhGIZhNAE2PGoYhmEYhtEEmNFmGIZhGIbRBJjRZhiGYRiG0QSY0WYYhmEYhtEEmNFmGIZhGIbRBJjRZhiGYRiG0QSY0WYYhmEYhtEEmNFmGIaxAkTkgIi8qs7H+DsReU+dj7FRRH5fRD5U1H6viDynnsc2DKMyzGgzDMNYhYjIEG4JnH+r53FUdRZ4AAgWLfp74G/reWzDMCrDjDbDMAwfKSgsXswfAreoaqKB3SnkJuA3RWSLT8c3DKMIM9oMw6gZIvIOEflhweenReQ7BZ8PicjzROQDIrJPRCIi8riI/F7BOteIyHeL9vtPInKt9/4EEfl/IjIhIs+IyNUF6x0QkfeLyK9FJCQi3xKRjoLlKiJnFHz+qoh8rGDbv/C2jYnIdSKyWURu9fr5M68wdCEv9Po/IyJfKTrWcv28RkR+DcQWMdwuBm4r5/9eDiIyJCKXFb1+c7H1VTWJ64F7Ta36YBhGdZjRZhhGLbkNuFBEWkTkBNwhtwsAROQ0oBu3MPo+4EKgD7fg9n+KyPHePr4JXCIiPd52AeBNwDdEpAX4IfAwcCKwA3iPiBQaFm8CLgJOBf4HrseqXH4feDXwLOB1wK3Ah4Ah3Pvl1UXrvxXXqDnd2+bDXp/L6ecVwO8AG1U1W6Ivz8UtHl4TVHVCVb9b9PrFMps9AfxGrfpgGEZ1mNFmGEbNUNX9QAR4HvBy4MfAiIhsB14B3KGqOVX9jqqOeO+/BTwNnO/tYxjYDcx5334LiKvq3cALgSFV/VtVTXvH+7/A5QXduNbb9zSu4fS8Ck7hn1V1TFWPAHcA96jqg57X6fvA84vW/xdVPeQd6+O4hhgV9PPQEsOfG3H/lwCIyIki8jcicomIPCAiHSJyjojsFJF/9IIJLhOR/xSRV3vr/aeInLnUCXvG8WXAeSLy3KLFEa8fhmGsAhabS2EYhrFSbgNeCZzhvZ/FNdgu8D4jIn8AvBfY5m3TDWwq2Mc3cA2g64G3eJ8BTgFOEJHZgnUDuAbWHKMF7+PACRX0fazgfaLE5+6i9Q8VvB8uOFY5/SzcthQzwJy3sQu4EbhEVSdE5A5VTYrIScBDwP8E3quqKiKfBD6iqntF5PXAs3GN4pKoagQ36ODvSyzuwdXPMIxVgHnaDMOoNXNG24Xe+9twjbZXALeJyCm4XqergEFV3Qg8CkjBPr4DvFJEtuJ63OaMtkPAM6q6seDVo6qXlNm3OLCh4HO1k+xPKnh/MjBSQT91mX3/GnfIFeDNwAOqOgF5QwtVvRV3OPfrnsF2BrBfVfd6270C2LXSk8M1+B6uYnvDMGqIGW2GYdSa24DfBDpV9TCud+kiYBB4EOjCNVgmwA1eAM4p3IFnnPwS+Aqu8fOEt+heIOJN4u8UkYA3RPjCMvv2EPAWb7uLcI2aarhSRLaKyADwV8C3atRPgFsK+tdGgbdMRJ7red/ANdp+UvxeRF7ibXOciJxe6Yl5QRUvAH5a6baGYdQHM9oMw6gpqvoUEMUbClTVMLAfuEtVHVV9HPgsrgdoDHfC/V0ldvUN4FUc87Khqg7wWtx5as8Ak8CXcAMayuHduAEGs7hBBDdWcm6L9PEnuOe3D/hYjfoJ7tDwJSLSCdyAa3y9XkR+HzhJVWNewEObqh70tjkXuNl7n8P1/D1HVfet4NxeB/xSVUeWXdMwjIYgqst56A3DMAw/EJFPAOOq+jkfjn0PsFNVH230sQ3DKI0ZbYZhGIZhGE2ADY8ahmEYhmE0AWa0GYZhGIZhNAFmtBmGYRiGYTQBZrQZhmEYhmE0AWa0GYZhGIZhNAFmtBmGYRiGYTQBZrQZhmEYhmE0AWa0GYZhGIZhNAH/Pwe0boMzQ7jIAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 720x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure(figsize=(10,3))\n",
"ax=fig.add_subplot(111)\n",
"plt.plot(nus,xsv,lw=0.1,label=\"exojax\")\n",
"plt.yscale(\"log\")\n",
"plt.xlabel(\"wavenumber ($cm^{-1}$)\")\n",
"plt.ylabel(\"cross section ($cm^{2}$)\")\n",
"plt.legend(loc=\"upper left\")\n",
"plt.savefig(\"co_exomol.pdf\", bbox_inches=\"tight\", pad_inches=0.0)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:46:17.927547Z",
"iopub.status.busy": "2022-10-20T05:46:17.926019Z",
"iopub.status.idle": "2022-10-20T05:46:18.369078Z",
"shell.execute_reply": "2022-10-20T05:46:18.368787Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAADUCAYAAADp/5XCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABaIklEQVR4nO2dd5wkZZ24n+90mOnJcWc2J5bFJeckiC5KUEERFfTMeoeCnD/vzOG4gGI8jhPP88R4B2YQEURBwi5KXJC0LGyaDbOTQ0/onk7f3x/dM/ROv7s7Pd1dXd3zPp/P7HZXdVW99dRb3d96o6gqFovFYrFYLJbypqLYCbBYLBaLxWKxFB4b9FksFovFYrHMA2zQZ7FYLBaLxTIPsEGfxWKxWCwWyzzABn0Wi8VisVgs8wBvsRNQaO677z6tqqoqdjJcRywWw+st+8ufNdaLGeslE+vEjPVixnoxY71kMjEx0b9+/fq2Quy77E1XVFRwxBFHFDsZrqOrq4tFixYVOxmuw3oxY71kYp2YsV7MWC9mrJdMNm3a1FmofZd99a7H4yl2ElxJQ0NDsZPgSqwXM9ZLJtaJGevFjPVixnpxlrIP+mKxWLGT4Er6+/uLnQRXYr2YsV4ysU7MWC9mrBcz1ouzlH3QZ0v6zNinKzPWixnrJRPrxIz1YsZ6MWO9OEvZt+kzTTOnqoyNjRnXzRcikQjBYBAAEaG2thYRKXKqik8kEil2ElyJ9ZKJdWLGejFjvZixXpyl7IO+RCKRsWxsbIzKykr8fn8RUuQOKisrqaysBJI33djYGHV1dUVOVfEJhULFToIrsV4ysU7MWC9mrBcz1ouzlH31rs/ny1imqvM64IP9vfj9/nld6plOR0dHsZPgSqyXTKwTM9aLGevFjPXiLCUV9InIKhG5SUR+mXp/loh8R0S+JyJ/Nm0TjUadTWSJYL2Y6e7uLnYSXIn1kol1YsZ6MWO9mLFenKUoQZ+IfF9EekXk2RnLzxeRLSKyVUQ+PXM7Vd2uqh9Ie79BVa8A7gB+ZDpWRUVJxbWOYdvvmZnvJcAHwnrJxDoxY72YsV7MWC/OUqyI6IfA+ekLRMQD3AhcAKwDLheRdbPc3zuAm00ryjnou+uuu7j++uvntK3t1WzGtms0Y71kYp2YsV7MWC9mrBdnKUpHDlV9UERWzFh8CrBVVbcDiMhPgYtF5CTgBOBrqrp35r5EZBkwoqqjpmP19fVx5pln4vV6icfjXHLJJbzvfe9jcnKSiooKRIR4PD69HsDr9RKNRqcDo3g8js/nmx7zz+PxEIvF8Hg8qCqJRAKfz0c0GkVEZr3e6/WSSCT2W19RUUFFRcX0+ng8jqrut34qza973etYv349k5OTxvUHO6dIJEJVVdX0OcViMTo7O6mvrycejzM+Pk5HRwfd3d34fD4aGhro7++noaGBSCRCKBSaXu/3+6mrq2NgYICmpiZCoRDhcHh6fVVVFYFAgKGhIVpaWhgdHSUSiUyvDwQC+P1+RkZGaG1tZWRkhGg0Or2+pqYGj8dDMBikra2NwcFBVJW2tjZ6enqora0Fkh102tvb6evrQ0Robm6mr68vq3OKx+MMDAyU1Tnl4zpt376djo6OsjqnXK/T9u3bWbx4cVmdUz6uUzgcnk53uZxTPq5TZ2cntbW1ZXVO+bhOQ0NDrFmzpqzOKdfrVEikWA34U0HfHap6VOr9pcD5qvrB1Pt3Aaeq6lVp27QA1wKvBb6nql8WkX8G7lZVY5u+jRs36pFHHrnfsmAwSH19fQHOKjt+/vOf893vfpdIJMKJJ57IO9/5Tj72sY9xzz33EI/HOffcc7nppptYuHAhH/3oR9m5cyeBQIDrr7+eI488kptvvpmnnnqKr371q/z+97/n61//OtFolObmZv77v/+bBQsW8OlPf5rm5mY++clPcu+99/LNb36T3/72t6jqfqV9bnFSbKwHM9ZLJtaJGevFjPVixnrJZNOmTU+sX7/+pELsu6TqPlV1QFWvUNXVqvrl1LJ/OlDAB+YhW9zAli1buPXWW7nrrrt48MEH8Xg8bN26lQsuuIBrr72Wa665hre97W2sW7eO6667jqOPPpqNGzfyhS98gQ9/+MMZ+zvttNP44x//yAMPPMCb3/xmbrjhBgC++MUvcuutt7JhwwY+85nP8K1vfYuKigrXeik2dvgAM9ZLJtaJGevFjPVixnpxFjeN07cXWJr2fklqWU7MJrh53feezPUwGfzhg8cfdP2DDz7IX//6V9avXw9AOBymtbWVT3ziE6xfv57Kykquu+46AB5++GF+9KNkP5Wzzz6bwcHB6YGVp+jq6uL9738/PT09RKNRli1bBkB1dTXXX389b3jDG7j22mtZuXIl4N5guNiEw+FiJ8GVWC+ZWCdmrBcz1osZ68VZ3BT0PQasEZGVJIO9y0h20MgJ0zh9MzlUgFYIVJXLLruML37xi/st7+7uZnx8nGg0SjgcpqamZlb7+9SnPsVHPvIRLrjgAjZu3MhXvvKV6XWbN2+mubl5v7YCs/EyH7FjRpmxXjKxTsxYL2asFzPWi7MUa8iWW4C/AGtFZI+IfEBVY8BVwN3AZuDnqvpcrsdy63h0Z599Nrfffjt9fX0ADA0NsXv3bj7+8Y/z2c9+lre+9a388z//MwCnn346v/jFLwDYuHEjLS0tGW0ggsEgCxcuBOCWW26ZXr57925uvPFG7r//fu655x4ef/xxwL1eio0dM8qM9ZKJdWLGejFjvZixXpylWL13Lz/A8juBO/N5LLcO2XLEEUfw2c9+lre85S3TvXcvuOACvF4vl156KfF4nPPOO48HH3yQT33qU3z0ox/lla98JYFAgG9/+9vT+5kab+9Tn/oU73vf+2hsbOSss85i165dqCpXX301//Iv/8LChQu54YYbuPLKK7n33nvtkC0HoKqqqthJcCXWSybWiRnrxYz1YsZ6cZai9d51Cjf33s2Vb33rW4yOjvKZz3wm623j8bjtvWvAejBjvWRinZixXsxYL2asl0xs790cmBqHrtz4wQ9+wC233MLb3va2OW1frl5yZWhoqNhJcCXWSybWiRnrxYz1YsZ6cZayD/q8Xjf1Vckf73vf+3jooYdYvXr1nLYvVy+50tLSUuwkuBLrJRPrxIz1YsZ6MWO9OEvZB312aBIzUzN1WPZndNQ4scu8x3rJxDoxY72YsV7MWC/OMi+DPhEhEokUITXuIb0tZyQSme4QMt+Z7/niQFgvmVgnZqwXM9aLGevFWcq+js80Hl1tbS1jY2PzelDIeDzO5OQkkAyCp+YHnO/YMaPMWC+ZWCdmrBcz1osZ68VZyj7oM41HJyLU1dUVITXuobOzk+XLlxc7Ga6ju7vbejFgvWRinZixXsxYL2asF2cp++pdt47TV2wCgUCxk+BKrBcz1ksm1okZ68WM9WLGenGWso+IbFs1M36/v9hJcCXWixnrJRPrxIz1YsZ6MWO9OEvZB322l6qZkZGRYifBlVgvZqyXTKwTM9aLGevFjPXiLLNu0yciC4DzgGOBRmAY+CvwR1V17eR5djw6M62trcVOgiuxXsxYL5lYJ2asFzPWixnrxVkOWdInIq8QkV8Cm4F3AT6gO/X/u4DnROSXIrKuoCmdI7akz4x9ujJjvZixXjKxTsxYL2asFzPWi7PMphjsh8DXgHeq6uTMlSJSCVwE3AScntfU5YFyn1t4rph6NVuslwNhvWRinZixXsxYL2asF2c5ZNCnqqceYv0k8IvUX0ERkVXA54AGVb00Vbp4DTAA3Kuqv5y5jWmcPosdG+lAWC9mrJdMrBMz1osZ68WM9eIsRenIISLfF5FeEXl2xvLzRWSLiGwVkU/P3E5Vt6vqB9IWXQD8p6p+GHi36Vj2KcJMd7drm2EWFevFjPWSiXVixnoxY72YsV6cZTZt+k4QkZtF5FoRqRaRNSLyuRyP+0Pg/BnH8QA3kgzk1gGXz6Kd4E+Ay0Tka4Bx1maPx5NjUsuTmpqaYifBlVgvZqyXTKwTM9aLGevFjPXiLLNp0/cG4O+AJcDfA98CXgVcO9eDquqDIrJixuJTgK2quh1ARH4KXCwiJwEnAF9T1b0z9tMLXJkKGH9tOtbAwABnnnkmXq+XeDzOJZdcwpVXXkl3dzc1NTV4PB6CwSBtbW0MDg6iqrS1tdHT0zM9NdnY2Bjt7e309fUhIjQ3N9PX10d9fT3xeJzx8XE6Ojro7u7G5/PR0NBAf38/DQ0NRCIRQqHQ9Hq/309dXR0DAwM0NTURCoUIh8PT66uqqggEAgwNDdHS0sLo6CiRSGR6fSAQwO/3MzIyQmtrKyMjI0Sj0en1sz2ngYEBamtry+qc8nGdAoEAnZ2dZXVO+bhOAwMDJBKJsjqnXK/TwMDA9Dig5XJO+bhOHo+H3t7esjqnfFynkZGR/fZfDueUj+s0MTFBbW1tWZ1TrtepkMihOjqIyJuBvar6aOr9G4EvqOopOR04GfTdoapHpd5fCpyvqh9MvX8XcKqqXpW2TQvJYPO1wPeAW4DPAjXAf6nqxpnHuf/++/XYY4/NJalliZ2GzYz1YsZ6ycQ6MWO9mLFezFgvmWzatOmJ9evXn1SIfc+mpO8Z4I3AowCq+lsRKcrgd6o6AFwxY/HfHmwb25HDTFtbW7GT4EqsFzPWSybWiRnrxYz1YsZ6cZZDtulT1a2q+u8zlt069VpEVuYpLXuBpWnvl6SW5UQsFst1F2XJ4OBgsZPgSqwXM9ZLJtaJGevFjPVixnpxljn13hWR1SLyhlR1a1WqajZXHgPWiMhKEfEDlwG352G/FgN2/EIz1osZ6yUT68SM9WLGejFjvTjLXIdsuQZ4PbAB+DLwmmw2FpFbgL8Aa0Vkj4h8QFVjwFXA3SRn//i5qj43x/RNY6dhM2OL1M1YL2asl0ysEzPWixnrxUw+vAxNRIknbPA4G+Ya9N2sqh9W1XXAV4AfZbOxql6uqgtV1aeqS1T1ptTyO1X1cFVdrapz7h2cjh2nz0xPT0+xk+BKrBcz1ksm1omZUvOScKikqdS8OEU+vHzyzq1s2juah9SUP3MN+iKp2TFQ1b+o6iN5TFNeseP0mZnqRm7ZH+vFjPWSyYGcfOvPu3l09/ydT7SU8sqOwRDn3/QUu4bDBT9WKXlxkly97B4O0zkcZm8wY5ZYi4G5Bn3vBe4Wkd+LyMdF5PA8pslSAkTiCTbsGC52MuY1d2zu5/E9wWInw5JGQpUHtg/zQu9EsZNimQW/3dwPQJcNGEqWx/YE8VUI+0btNZwNcw36blPVNcCVwATwD/lLUn6Jx+PFToIrGRsby2n7p7pG+fqDnWXXCDdXL06xYzDEDQ/t5s4X+h05Xql4cRKTk52DYUbCsXld6lBKeWU4FKXG72FgovDNgErJi5Pk6qV/PMphrQH2zeN7Lhvm2sshAaCq24Bt+UtO/rHj9Jlpb2/Pafsn944SiiYYCsVori4fx7l6cYq9I8kvOKfaLpeKFycxOdnSN87Shsrp6zMfKaW8MhyKcVhLgIHxwgd9peTFSXL1EgzHWNtWw5Ndtk3fbJhrSd9ZInKviLxfRJbkNUV5xo7TZ6avry+n7Z/aN0bAV1F2JRq5enGK4XCMFU1VjpRQQOl4cRKTk5HJGEd11LI3OFl2peCzpZTyynA4xuqWgCP3USl5cZJcvQQnYxzeWk33PL7nsmGuQd+zwCeANuCHInJ/3lJkcYSpOUPnSt9YhKM7asuuRCNXL04xHIpyWEuAfgdKKKB0vDiJycnYZJxF9ZUIEJycn01LSimvDIeSQZ8T91EpeXGSXL2MTsZpr/OjwGTcBn2HYq5B3yNAm6p+RVXPBV6dxzTlFTtOn5nm5uY5b5tQZSwS5/DW6rIr6cvFi5OMhGOsag4wEo45Mj5VqXhxEpOT0ck4dZUe6qs8jE3Oz1qGUskr0XiCUDTOiqYAAxORgh+vVLw4Ta5eguEYdZUeqn0eJiLz80ErG+Ya9L2kqncDiEhAXVymasfpM5NLkXoomqDKW0FHnZ+B8cJ/WTpJqVTBDIditNT4qav0MBwqfHBRKl6cxORkdDJGXaWXap+H8UiiCKkqPqWSV0bCMRoCXlqqfQxM2HuoWOTqZXQyTn2ll2q/h4moDfoOxVyDvodEpCb1erWInJ+vBOUbO06fmfr6+jlvG5z6YfN7GI+W1w9bLl6cZDgco7Eq+YPV70ApRal4cRKTk6mSvhq/h/F5WupQKnllOBSjscpHjd9DyIFgoVS8OE0uXlQ19aDlocZfMW/vuWyYa9D3RVUdB1DVZ4Hq/CXJ4gS5DGWT/sNWbsXppTLEz3AoRmPAS12ll1EH2o6VihcnMTl5+Qdo/gZ9pZJXhsMxGqq8+D1CLKEFbyZRKl6cJhcvE9EEfm8FPk9Fqnq3vAohCsFcg76TRaQl7b1r6/jsjWZmfHx8ztuOhpMlfeX4w5aLFyeZKumr9lUQcqC0tVS8OInJSfKBaH5XNZVKXpmIxKmt9CAiVHkrCMcKex+VihenycVLcDJGfWWy3X6y5ml+3nPZMNdeDt8D7hKRx4GXgAXAHXlLVR6x4/SZ6ejomPO2yTYUHmp8FWX3w5aLF6eYrtKo8hJwqGqqFLw4jcnJdCm4r/weiGZLqeSVUCxBwJss96jyVRCOJqjxF645UKl4cZpcf4vqKpPXrBxrngrBnEr6VLULOAd4DBgHvpTHNOUV25HDTHd395y3HU1v01dmxem5eHGKybjirRC8FULA60xJXyl4cZqZTiLxBLGEUuWtmNfti0olr4SiCQK+5E9gwOshFCvs9SoVL06Ti5eJSJxqXyro883fey4bDhn0icjVIlI5c7mqTqjqD1T1u0BERK4uSAr3T8ubROR/RORnIvI6EVklIjeJyC8Psk2hk1WS5FICOrOxuos7b2dNKZQMh6JxAqkvumqHSltLwYvTzHQyNhmn1p+sLizHpg+zpVTySigapyp1H1U50EyiVLw4TS5ewrEEVanAvdrnYaLMOhYWgtmU9HUAW0Xkv0XkHSJyoogcnvr/chH5Di9X8c4KEfm+iPSKyLMzlp8vIltEZKuIfHrmdqp6m6p+CLgCeLuqblfVDxzsWLb3rpmGhoY5bzvVWN3vqUAEImU0IGYuXpwinBoyByDg8zhS0lcKXpxmppOJaJxqf1pV0zz9ASqVvBKOvly960SJeal4cZpcvKR/F1bb6t1ZccigT1U/CxxPMrD7AHAXyRk57gTeD2wBjlfVz2dx3B8C+w3zIiIe4EbgAmAdcLmIrDvA9p9PffaQ2GnYzPT3989527FIfLrtS7kNiJmLF6fYr1rKV+FIm75S8OI0M53s9wM0j9v0lUpeCcVevo+qfBWEC1y9WypenCYXL+HYy/dcje3IMStm1ZFDVfuBr6f+ckZVHxSRFTMWnwJsVdXtACLyU+BiETkJOAH4GtAFXAfcpaqbZnOs4eFhzjzzTLxeL/F4nEsuuYQrr7yS7u5uampq8Hg8BINB2traGBwcRFVpa2ujp6eH2tpaAMbGxmhvb6evrw8Robm5mb6+Purr64nH44yPj9PR0UF3dzc+n4+Ghgb6+/tpaGggEokQCoWm1/v9furq6hgYGKCpqYlQKEQ4HJ5eX1VVRSAQYGhoiJaWFkZHR4lEItPrA4EAfr+fkZERWltbGRkZIRqNTq+f7TmFw2HC4fCczmlkLMRY5SSTk3VUSoKde7vxLWwq+jnl4zpVV1fT2dnpmutkOqcde7rwidLf308oOMxo2EtnZ2dB8144HKa3t9c118kN91M4HGZgYGD6nIJSR0Uiyp49e/BqJf3BMYaGhkrqnPJxnTweD729va4/p/7hMRbXNtDZ2YlH4/QOjtCZGC7YdYrH43R2drrmOrkl701OThIOh+d0Tl29/cQjyvj4OBMjgwyPUxJ571DXqZBIsdpjpYK+O1T1qNT7S4HzVfWDqffvAk5V1avStrkaeA/JDiRPAb8ArgVeC3xPVb888zgPPvigHn300YU9mRKkt7eXBQtmXSO/H1+4exsXHtHK6csbuPK2F7j6zKWsbas59IYlQC5enOLxPUF+8XQvX7nwMB7cMcT924b44rmrCnrMUvDiNDOdPL4nyC+f6eW6Cw7j+Z5xvvPwHm64eG0RU1gcSiWvXHvvDs5c0cg5q5v4+gOdHL2wlvMObzn0hnOkVLw4TS5efvbXHkYnY3zwlMU8vGuEOzb382/nrc5zCp1n06ZNT6xfv/6kQuy7pCamVdUbgBtmLL7iYNskEvOzXc2hCIVCc952ZpF6OQ2ImYsXpwinVe861Xi5FLw4zUwn4ViCyun2RRXztk1fqeSVmdW7hW7TVypenCZfv0VOdWordeY6OHMh2AssTXu/JLUsJ2yPKTO5jI00OaPHVDm1XSqFsbRCsfh+bfrCDgQXpeDFaWY6SW/TV+WtYLLAg/26lVLJK/sP2VL4trGl4sVpcvESjsan77nKeXzPZYObgr7HgDUislJE/MBlwO257tSO02cml3YDM5+uCj2+lZOUwlhaoWiCgDetI40DT7el4MVpZjqZjCf2+wEq9AwPbqVU8sr+Q7Z4Cv7wVCpenCbn36Kpa+itYDJWPiNJFIqiBH0icgvwF2CtiOwRkQ+oagy4Crgb2Az8XFWfy/VYFRVuimvdg9/vn/O26dVYlWV2o+XixSnC0ZdLWgMOTcNWCl6cZqaT9Osyn0v6SiWvhNNm5Aj4Ch+kl4oXp8n1t2j/B63yKYAoFFm16UuVwL0XOA6oTV+nqu+e7X5U9fIDLL+T5FAwecMGfWbq6urmvO3MaqxwGbWjyMWLU6S3RXKqpK8UvDjNTCfhWIIqz8s/QJF4AlWddwPEl0peyazeLWzQVypenCZfv0XlVgBRKLKNiH4EfAwYBbbN+HMldpw+M1NDTcyFjKerMhqcORcvThGKxvebM9SJkr5S8OI0M52kzw5QIclp8spp4PLZUip5JX1mmyoHmqmUihenyfm3yFeeBRCFItveu+cDK1V1uABpKQheb0l1UHaMpqamOW2nqkzOqN4tp16Kc/XiJKHoy+1YfBVCQpVYIjkfb6EoBS9OM9PJZCxBc+Dl75upKt6pe2W+UAp5RVX3e3it8ha+TV8peCkGuXiZWQARiSsJVSrmWel6NmT7bbQLyJiH183YIVvMzLWbfCSueD2CJxVgJJ+uysdxKQyrEE6r3hURR55wS8GL02QM2ZJW1QTztzNHKeSVSDz5kDT1PeZE29hS8FIM8jVkS4UIPs/8LF3PhmyLwX4M/EZE/gPoSV+hqn/KW6ryiA36zITD4bltF9v/h63cGqzP1YuTJKul0q6BL9mWpbaAj2Ol4MVpZjoJx+L7lerN16CvFPJKetUupIK+AlfvloKXYpCLl3B0/5L0qQfgqnlWup4N2QZ9U7NjfGnGcgUKOyXAHLHj9JmZ69hIptKMyXj5/LCVwlha6UO2QKpqKhYHCpfXS8GL02SM05fWvgjK74FotpRCXgnNeHgNOFC9WwpeikFO4/TNuOdsZ45Dk1U4rKorD/DnyoAP7Dh9B2KuYyPNbKNU5dDgwE5RCmNpmYKLQpcolYIXp8kYp89QCj4fS/pKIa+EIomM0vKQvYeKQr7GjAU7QPNsyLqXg4isAS4HFpOcMeMWVX0p3wnLF3bIFjNVVVVz2i7jJvOU1w/bXL04SfpQE+BMu8pS8OI0M50k742XS2Dn6w9QKeSV9FltwN5DxWSuXlQ1o5p+vj5oZUNWEZGIvBF4AjgCGATWAo+LyEUFSFtesEGfmUAgMKftwrF4WVdhzdWLkySHbEn7onOglKIUvDjNTCfJ9kUv9xqcr236SiGvhKL7B+jJjhxxVAtXNVgKXorB3H+LEvg8FfuNWmCDvkOTbUT0JeBiVX2Hqn5GVd8JXExmGz/XYMfpMzM0NDSn7TI6cjgwkr2TzNWLk6T33gVngotS8OI0M53MLOkrt57ts6UU8kp4Rmm5z1OBiBBNFC7oKwUvxWCuXsYjcWr8+4cwdlaOQ5Nt0LcE2DBj2cbUcldix+kz09LSMqftjB05yijom6sXJwlFDW36ChxclIIXp5npZDwSp7ZyRvVuGXVymi2lkFdCsTjVvv1//gIFbp9cCl6KwVy9jEfi1KRV7YKdf3c2ZBv0PQX8w4xlH08tdyV2yBYzo6Ojc9puPJqgxl++7Zbm6sUpoqkgwu9xtsOA270Ug3Qnqpoqedi/pK+c7o3ZUgp5JX2A8ykKXWJeCl6KwZx/iyL7/xZB+f0eFYJsi8E+AtwuIn8P7AaWAePAG/OdsHxhgz4zkUhkTtuNR+JU+8u34excvTjFzE4c4EwVu9u9FIN0JwdsXzQPq3dLIa+Eo4npqQynSM6/W7iqwVLwUgxy+S2aGfSVW3OjQpBV0Keqm0XkFcBpwCKgC3hEVR0ZF0VE3gS8HqgHbiIZeP490Arcq6r/NXMbO06fmbmOjTQeiVNbxiV9bh9La2abSnCmRMntXopBupOxGfcFlN+9MVtKIa+EYpkPTwGfp6CzcpSCl2KQy2+RqaTPBn0H55DVuyJydtrr1wBnA36gP/X/Wanls0ZEvi8ivSLy7Izl54vIFhHZKiKfnrmdqt6mqh8CrgDerqqbVfUK4G3AmaZj2XH6zMx1bKSxyf1/3HwVQlyVeAEbQDuJ28fSmjlEAdhx+opFupOxyTg1lZmlDoXuVe1GSiGvhKLxjOrdQIGvVyl4KQZz9TIezQz6anwexiO2I8fBmE1J37eBo1KvbzrAZ7KdkeOHwLdITusGgIh4gBuB1wJ7gMdE5HZVfd6w/edTnyU1XMyHgZ+YDmSHbDEz127y45EYNf6Xt52e+zWW2b6iFHH7sArG6l1vBYMThe2l7nYvxSDdiamkr6HKywu9404nq+iUQl450H1UyOr4UvBSDOb+W5QZ9LXU+NjSO5GPZJUthwz6VPWotNcr83FQVX1QRFbMWHwKsFVVtwOIyE+Bi0XkJOAE4Gskq5OvA+5S1U2pfd1Osp3h74CbZx5rcHCQM888E6/XSzwe55JLLuHKK6+ku7ubmpoaPB4PwWCQtrY2BgcHUVXa2tro6emhtrYWgLGxMdrb2+nr60NEaG5upq+vj/r6euLxOOPj43R0dNDd3Y3P56OhoYH+/n4aGhqIRCKEQqHp9X6/n7q6OgYGBmhqaiIUChEOh6fXV1VVEQgEGBoaoqWlhdHRUSKRyPT6QCCA3+9nZGSE1tZWRkZGiEaj0+tne05DQ0PU19dnfU5D45PEQ0Jn59j0+koP9A4FqQgHi3pO+bhO1dXVdHZ2uuY6zTyn4UglxCIMDQ1Nn5OXSvqHR+jqqihY3psaVsEt18kN99PQ0BAeT/JHZ8eeQQJeYffu3dPnFB0dpHc0Sn9/f8mcUz6uk8fjobe319XnNDgyRqgywsRE9fQ5SSLK7n09nNBRVZDrNDY2tt/2xb5Obsl7ExMT1NfXZ31OwYkKoqFxurq6ps8poD72Do3R2dnp2rw3m+tUSCSbwShF5B9V9euG5R9X1W9mdeBk0HfHVFApIpcC56vqB1Pv3wWcqqpXpW1zNfAe4DGSPYZfAC4BKoGnVfXGmce5//779dhjj80mafOCzs5Oli9fnvV2H7/jRd574kKOWVg3vezK217go2cs5YgFNflMYlGYqxen+EvnCHdt6edfXrd6etl92wb5c+cIn3tNXp7JjLjdSzFId3LPS4M8vifIp1+94uX1QyH++Z4dfP+t64qUwuJQCnnli3/YxgVrWzl9ecP0sn/fsIvDWgK8cV1bQY5ZCl6KwVy93Pjn3Syqr+TNRy2YXrZtYIKv3N/Jd9/yinwm0XE2bdr0xPr1608qxL6z7b37RSAj6CNZ3ZpV0DcXVPUG4IYZi+8/2DZ2nD4zra2tc9puwlCk3hzwMRgqj7aTc/XiFOY2fYWfLN7tXopBupOxGWP0ATRX+xicKI/7IhtKIa/MHOsSYGG9n32jhethWwpeisFcvZiqd1tr/AzMw3suG2YVEaV11PCIyKsBSVu9CsjHAER7gaVp75ekluVEPG4bdZoYGRmhpib7krkxU9BX7St4mzKnmKsXpwgZeu+21vjoGy/scBBu91IM0p2Y7otav4doQo09rssZt+cVVaV7NEJLYP+RHZY0VHF390DBjut2L8Virl6Ck5kPWvWVHsKxxLy757JhtsVgUx04qoDvpy1XoBv4aB7S8hiwRkRWkgz2LgPeketOCzmXYilzoF7Nd784wPM94/y/s5YZ18/svQvQUkYlGm7v7T0eiWc0QF/SUMnekUkSqlSIHGDL3HC7l2KQ7mR8MkZz9f5BhIjQHPAxNBFlYX2l08krGm7PK13BSWIJZWnj/tdkWUMVu0cmC3Zct3spFnPxoqps6Zvg6jOX7rdcRGit9jEwHmFxQ1W+klhWzCoUVtWVqU4c/zf1OvW3SlXPSHWmmDUicgvwF2CtiOwRkQ+oagy4Crgb2Az8XFWfy/J8MrDj9Jk50NhIT+wJcteWAfYavvziqVKLalNJX5lU77plLK0tfeP85rm+jOU7B0Msa9z/yyzg81Bb6aV/vHDXwC1e3ES6k97xKE2BzO+apoC3bB6IZoub80rvWIQbHtrDiYvrkBkPSAvr/fSNR6Znvck3bvZSTObiZddwmICvggW1/ox1yxqreKk/lI+klSVZlX+q6rvzcVBVvVxVF6qqT1WXqOpNqeV3qurhqrpaVa/Nx7Hs05WZA/UQmowpHoEX+zOHmkiWMnkySpPK6YfNLWNpPb5nlJuf6s4Y//DF/hBr26ozPr+koZLdw+GCpcctXtzCi30T/OeD2wFIqPLXrlGOWVib8bmF9ZXsKmDpkRtxc175w4sDeCuEy45rz1jn81SwqK6SbQOFCRjc7KWYzMXLk11jHNOReb8BnLa8gb/sGsk1WWVLVkGfiNwgImfMWHaGiFyf11TlkakhFSz7c6A2FD1jEV7RXsOAoY3e5t5xDmvJHFOppdpX0FImJ3FLm5tdw2GGQjGe6xmbXjYRidM7FmF5U+Y1WNpQxa4CBn1u8eIWHt41wv17JgnHEmwfCFFf5TWWOpy8pJ5H5tkPkJvzyoM7hnnHce0sOUDV3xnLG9i4c7ggx3azl2IyFy/3bxvirJWNxnWnL2vgsd1BOzPHAci2pePlwOMzlj1BHtreFQrbpM/MgYLh3rEI6xbUGEvunuwa5fhFdRnLVzYH6ApOEgyXfmcOtzwk7BoOs25BDS/2vTzQ6F/3jbG2rXq/+V2nOG5xLY/sDhYsPW7x4hae7RnDI/D4niAbdw5zytJ64+dOWVrPU12jBZ3T1W24Na8MTkQZmIjyivYDBxlnr2rk/u1DBZlhyK1eik22XnYNhdk3OslJS8z3XHO1jyPba3hg+1A+kld2ZBv0qWEbzxz24xgT0dIPRApBMJgZIIxH4sQSyoqmQEa3d1Xl8T2jHL84M+ir9FZw7KI6Hi1g0OEUJi9OE08oe4bDnLy0np6xl3vl/mnbIK9a1WTc5pSlDbzQO85wgdpWusGLW4gnko3Iz1texYYdw9yzdZDXrmk2fra+yssxC2t5YPuws4ksIm7NK1v6Jji8tfqgnZ1Wt1TTWOXjsT35Pwe3eik22Xr56V+7uWhdGx7Dw+8Ub3hFK7c912c7chrINljbAPybiFQApP6/JrXclYTjhenNWOq0tWUOQNo7FmFBrZ/m6sw2ei8NhIjGE8b2ZABnrWjkT9sGC5JWJzF5cZqBiSi1lV5WNlfRnRo3bCgU5Yk9o5x9gCqNKm8FZyxv4A8vFeYauMGLW+gdj1BX6eGNRy/kge1DLKj1s7rFfF8AXHhEK3ds7p83P0BuzStb+sYP+P2VzpuObONXz/Tm/fhu9VJssvHSFZzk0d1B3nTkwbc5eWk9qlrQ2o9SJdug7++Bc4F9IvIoyWnRXkt+hmwpCGOROJEC9cYqZQYHM4ODoVCUpoCXlmpfRknfnS/089o1zQd8Sj5rZSNb+iboKeDgpk5g8uI0AxNRWmt8tNf6p0v6bn22j3NWN1FfdeBRli5a18Zvn+8vSNWUG7y4he5ghIV1lUh4lIvWtWUMGzGTU5bWE4rGebIrH8OZuh+35pVnusdnNWvQq1c30Tce4ak8Xy+3eik22Xj53037eOO6tkPO814hwntPWsR3H9lrf/9nkG3v3T0k58G9mORcuG8CTkwtdyW+CmHDjuFiJ8N1mEodRsIxGqu8GTMJ9I5F2LBj+KDTE1V6K3jdmmZ+/Vz+n5CdxA2lMQMTUZoDLwd945E4d77Qz1uPWXDQ7Y5YUEN7rZ97t+b/x8UNXtxC1+gkC+sqUVU+cvoSVhg61qRTIcLfnLCQ7z3aVZCA3G24Ma/sHAqxdyTMCYbmKTPxVAgfOHkxN/5lT16Hb3GjFzcwWy+b9gZ5unuMtx598O/BKU5b1sCShsqClNqWMnNpi7ce+BDwHlV9GDghbcYO19EU8PKLp3tJ2BtuP0xF6sOhGI0BL7V+DwqMTibbQ/7i6R7OP7yFhoOUMgFcenQ797w0SH+BZ4coJG6oghmciNJS7aO20otHhO88vIeTl9azsO7QA/y+96SF/PCJfUxE8ttxwA1e3MK+4CQL6/1ZOTlnVSMBn4c7X+gvYMrcgdvyiqryP490cfGRbfg9s/vJe+WKBtpr/fzq2fwFDG7z4hZm42UiEuf6jbu5+sylGePEHowPn7aEXz/bx/YCDcNTimQ7ZMtHgf8CXgLOSi0OAf+W53TlDb8kqBDYaEv79qOnpydj2XA4RkOVFxFheWMVO4fC7B2Z5E/bhrh0Fk9XLTU+3viKVr77SM6z5xUNkxenGZiI0lydDLAvPXoBD+4Y5v0nL5rVtkd11HL8ojp+smlfXtPkBi9uYd9osno3GyciwlVnLOHHm7rpHSvdh6LZ4La8cvvz/QQnY7z1mMyx+Q6EiHDlGUv41TN9+/WgzwW3eXELh/KSUOWrD3RywuI6TlnakNW+F9ZX8nenLuZf793BeJ4fhEuVbEv6Pgacq6rXAVPl3i8Aa/OZqHzi8Xi44rTFfOeRvXkv/ShlamszB7YcSQV9kByGZftAiG9u2MU7juugqXp2M5tcdlwHm3snSrb9ksmL00yV9AFcflw7/3fZkbTVZI4BdyA+dMoi7t06tN8Yf7niBi9uIJ5QNveOs6o5kLWTlc0B3nJ0G1/6005iZVzN66a88lz3GP/7ZDefOme5caijg7GwrpKrz1zKv967g5E8DEflJi9u4lBefvTEPoZDMT5y+pI57f/cNc0cv7iOf7t3R8FmWyklsg366oDdqddT31o+wNWPrscsrOOERXX86In8ln6UGyOhGA2BZNC3qjnAjX/ZQzyhh+wplU6Vt4KPnrmErz/QmZcvyvlIsqQvGfSJCLWVs50iO0ljwMfHz17GtX/ayVCZzJTiFh7fE6Sl2seyprnN6/m2Y9qpq/Rw45932zZeBWb3cJh/uXcHn3zV8gMOxnwozlrZyGsOa+Jzv99mS4qKwE//2s3GHcP802tXzrpq3sSVpy+h0lvBV+7vLOsHrtmQrcUHgU/PWHY1cF9+kpN/4vHkjfqhUxezYecwD8+z0fEPxNhYZinQVEcOgHXtNVQIfPY1Kw46HpKJU5Y28JrVTVx3386Sa7hu8uI0vWPJ3ru5cNqyBs47vIVr7tmel4GB3eCl2OwdCfMfG3fzjuOSc4XOxUmFCJ9+9Qq29E2U7UOoG/JK51CIT925lfefvIiTDzBw9mx574kLOby1mi/cvY2xybk/yLrBixsxeUmo8j+P7OXuLYN89cI1xnmts8FTIXz21SuYjCW45o/b5/VsHdkGfR8F3iwiO4E6EdkCvA34eL4Tli98vmRmaajy8vnXrOQbD+4q6BylpUJ7e2b7luG06t01rdX8/gPHG6eWmg3vPWkRInD9xl0lVaJh8uIke0eSM5scqkfobHjXCR0sa6zimj/uyPlLrtheis3OoRCfumsrf3NCB6cvT7YrmquTGr+Ha89fzUOdI/zPI3tL6v6YDcXOK091jfLJVMB33uEtOe9PRLjqzCWsbqnmH+54ac5tMovtxa3M9BKKxvnXe3awuW+c6y86nJYcH4Cn8Hsr+KfXrqKxysvHbt/C3nk2J/YU2Q7Zsg84mWSg9w7gPcApquramaRjsZefzNa11/DBUxbxmd9vLfnx5HKlr69vv/fxhDI4Ec35iWoKT4XwhfUr2T08yX8+tKdkSvxmenESVeW25/o4e1Vj1qWrJipE+Ngrl9FS4+MTv3spp6reYnopNo/tDvKJ323lvScu4sIjWqeX5+KkKeDjG69fw7M9Y3zpvp1lNU1bsfKKqnLrs718+b6dfPqcFZx7gFlS5kKFCB85fTHnrmnmo7/ZwmNzGPR3Pt9DByPdywu943zk1i3UVnq47oLDDjliRLZ4K4R/OHsZFx7Rysd++yIPzsOp2rLtvftqYIWqPgpsBD4MfE9EOgqROMPx3yQi/yMiPxOR14nIOSKyQUS+IyLnzGYf5x3ewluOWsA//u4ldg3N3xI/mTHI8nM9Yyysrzzo4L/ZEvAlSzR2j4RL5odtpheniMQSXL9xN890j3H5sfm7nTwVwifOXsbJS+r5+9++OOehC4rlpZjEEspPNu3jGw92cs25KzOCiFyd1Fd5+eqFa6j2ebjqti3sHCqPYSWKkVf6xiN8/u7t/PGlQa6/6HDjdJG5IiK89Zh2Pvealfz7hl1895G9WX2nzcd7aDaICOFYgh883sUX/7Cd9520kH84e3lObfgOdbyL1rXxr69bxY+e2Mc//3E7A+Pzp+1ztla/DUzl8m+Q7MShwHez2YmIfF9EekXk2RnLzxeRLSKyVURmth1EVW9T1Q8BVwBvTx17DKgCjANEe72ZQcybj1rAu07o4B9/91LJ9jLNlebml3/A4gnldy8M8MoVjXk/To3fw7XnrabKW8HVv3nR9YF2uhen2DYwwVW/2cJYJM4337Amb9UZU4gI7z5xIe85cSGfumsrv3wm+3Eri+GlmOwcCvH/fvsim3vHufFNR3BkR2YPw3w4qfRW8P/OWsbbj23nE7/byv8+2V3yPQydzCuxhPKb5/r4yK1beMWCam64eO2sxrPMhWMW1nLjm9cyMBHl7379Ag/vGplVFf18u4dmQ0KV54JePvjL59kXnOTbb17L2QeYXzzfHLGghv968xGsaA7wd7/ezM1Pds+Ltn6STXsSEQmqar2IeIFeYBnJnrtdqtp68K3328/ZJIO1H6vqUallHuBFktO67QEeAy5X1ecN238D+D/gKVVNiEg78E1VfefMz95///167LHHGtPxVNcoX/rTTi5a18rlx3XkpUqtVOjs7GT58uXsC07yzQ27APj8+pV5L05P5/dbBrjpsS7ecVz7ISfMLhZTXpwgHEvws7/2cMfmfv721EWce1hzwUsD9gUn+cr9nVQIXHnGkoPOGZuOk16KSTAc4yeburl/+xDvOXEhrz+i5YDXJN9Oesci/OdDu9k3GuF9Jy3kjOUNJVk65EReSajy550jfP/xLtpq/Fxx2mJWNufeDjZbHt8T5DsP76W+ysP7T1rEUYaHgynmyz00G+IJ5cEdw9z8ZDcViShXnrWSYxbmv3R2tnQFJ/nB41082z3Om49q4/VHtB5yqrdCsmnTpifWr19/UiH2nW3Qtwc4ETgKuEZVzxIRP9CnqlmNmigiK4A70oK+01P7PC/1/jOpj+4lOfXb10jO9Xsd8EdVvSdtX37gZlW9dOZxbrvtNv3sZz+L1+slHo9zySWXcOWVV9Ld3U1NTQ0jEeU/H+kmipd3rg2wtM5DW1sbPT090+MHjY2N0d7eTl9fHyJCc3MzfX191NfXE4/HGR8fp6Ojg+7ubnw+Hw0NDfT399PQ0EAkEiEUCk2v9/v91NXVMTAwQFNTE6FQiHA4PL2+qqqKQCDA0NAQLS0tjI6OEolEptcHAgH8fj8jIyO0trYyMjJCNBqdXl9TU4PH4yEYDNLW1sbg4CCqmnFO+3r7eHy0hts3D3D+ymouP2ExgwP9BT+nkK+Obz/cRSiW4KozltIYD+btnPJxnQKBAKFQqKDXaW/XPp4aEn6xeYRV9R7+9rQleCZHC3ZOM69TX38/m4a83PLMAMe2+XjvKUtJjA0e9Jx27txJU1OTa65Tvu+nPX1D/Lm/gt+/OMSJ7X4+dPpyQsP9Bz2nzs5OWltb83pO+/btY/Ow8uutE1RonL85dgFr6mFyctLx74i5npPH48Hv9xfkOg0MDfP8mJ9fPdePrwLec+IilnjGqK2tLVre6+vv55mgl58+M0hbQHjrsQtZ7BmjOhDY75x6enrwer2uuU7F+H1SX4CNeyb4/dYRmgJ+LlxRyarqKMuXL3fFOQUravnFM7080zfJeWuaOb4xxsrWWsev08DAgGuCvk8BVwJ+4GOq+tNUO7/rVPXUrA6cGfRdCpyvqh9MvX8XcKqqXpW2zdUkO488BjxFsrTxPKAR+C9VvX/mcTZs2KBHHXXUQdOiqty5ZYAfPb6PM1Y08O4TFk6Pk1ZuRGIJ7twywC1P7uPIjlr+7tQltNfNrYfuXFFV/vjSID96Yh+HtVbz7hM6Zl3iVGj6+/unf8jzTSSe4J6XBvnpX3tor/XzrhMWcszC4g3YGgzH+OUzvfzuhX7OWN7A245pZ2mjeTyzQnopJjuHQtz5wgD3bh3k7JWNvO3Y9llXDxbSSUKVB7YnS0JE4E1HtvGaw5qp8hamnVM+KYSXruAkd20Z4I8vDrCsqYrLjm3n+EV1rioJjcQT3L9tiNue62MimuANR7Tw6tXN0801yvUeOhSxhLJpb5D7tw/zcOcIJy+t56JXtLKuvQYRcaWXfaOT3P5cH/duHWJxQyWvO7yFs1c2Olb655qSPgARORyIq+q2tPeVqvpMlvtZQZZB31w4WPXuTEYnY/zvk9388cVBzlnVxKXHLGBRfWHbhzjF4ESUu18c4Pbn+zm8tZr1C5Wzj15d1DRFYgl+u7mfXz3Ty+KGSt58VBunLm0oarVvIapgdg+Hkz9YLw2ypjXAO47rOGg1kNMEwzFue66POzb3s7ypiguPaOHMFY37NaQup6qpkXCMP3eO8IcXB9g3Osn5h7fw+le0ZjXrCTjjRFV5qmuM257r49meMU5f1sCrVzdx3KI6VzaPgPx56R2LsGHHMBt3DrNnZJJzD2vigrWtcx4Y2ylUlWd7xvnDiwP8uXOE1S0BXr26maUVQY5as7LYyXOEUDTOM91jPLRzhD93jrCo3s85q5o4Z3VTxggRbv5uiSWUx3YHufvFAZ7qGmVdew1nLG/ktGX1tGb5fZENrgr68nbgWVbvquqXcznOQw89pOvWrctqm6FQlNue6+N3m/tZ117D6w5v4dSl9fgK1JuoUERiCZ7YO8o9Wwd5cu8oZ61s5KJ1raxuqWZycpLKSncEtLGEsmHHELc+20f/eJRzVjex/rAmVjUHHH+Sz5eXruAkG3cMs2HnML1jEV63ppnz17ayuMEdzk1E4wn+0jnC717oZ+tAiJOX1PPKFY2cuKSOikTMNfllLvSORXh0d5ANO4bZ0jfOiUvqefXqJk5b1pD19FxTOH0P9Y9HeGD7MPdtG6JvPMJpyxo4eUk9xy+uK2r7o5nM1UsknuCF3nGe7Brj8T1BukcjnLasnrNWNnLcorqC9eYsJJOxBI/uDnLftkE27R1laWMVJy+p56Ql9axpDZTcb8qBiMYTbB0I8Wz3GI/vGeWFvnHWtFRzyrJ6XrWy6aC1SW76LToY45E4T+wJ8ufOER7bE6S52scxHbUcs7CWoztq81o7OF+CPi/JjhzrSbbjewx4h6o+l8txsinpm0koGufBHcP84cVBdg+HOWNFA6cva+C4RXVUurSaZWgiypNdozy6O8iju4Osag7wqlWNvOaw5v1+GNz6dLVzKMR9W4f407YhPBVw0pJ6Tl5SzzELawn4Cv/DNlcvE5E4z/aM8VTXGJv2BhkKxThjeQOvXNHIsYvq5hxYFIuBiSh/3jnMxp0jbOkbZ1W9h1NXtXHswlrWtFa7tpQJkiUtvWNRtvSN81TXGE92jTIWiXPC4jpeuaKRk5bU5SUvFfMe2jsS5uFdQZ7YG+S5nuRcwEd11HJEWzVHLKiZnru5GMzWy+BElC19E2zpG+eFvgle6B1naWMVxy+q44TFdRzdUevqfJYt23bsZLSyhcd2B3li7yhdwUkOaw2wbkEN69prWNNaTWu1z1VV1ibiCWXvyCQ7h0K82D/B8z3jbB0Isai+knXtNZy4uI7jFs3+QcStv0UHI55Qtg5M8PS+MZ7pHuPZ7nHqq7ysaQmwujXAYS3VrG4JzHnc27IL+kTkFuAcoBXoAf5JVW8SkQuB6wEP8H1VvTbXYz3wwAN6zDHH5Lob9gUneahzhIc7R9g6MMHathqO7qhJftEuqClKWxtVpSs4yYv9E7zQO8FTXaP0jUc5ZmEtJy6u48wVjQd8+ujq6mLRokUOp3j2qCrbB0M8vmeUx3YHebF/glXNAdYuqOYVbTWsbaumvc5PRZ6/IGfjJRJP0DkUZmv/BC8NhHipf4Jdw2EOb63m2EV1HL8wmSfK5QcrGI7xwPO72BX28/S+UXrGIqxqDrC6pZrDWgMc1hJgaWNVUUpiIrEEe4OT7B4Js3MwzIv9E2zpm6BCSF6PhbUcv7iOlc2BouQVJ5iMJXi2e4zne8d5oXeCF/rGCfgqWNNSzbLGKpY2VrGsqYqlDZWOPDile1FVRsIx9o5Msmtkkt3DYXYNh9k+GGIylmBtWzWHt1aztq2GozpqqMtynulSYmZ+GY/E2dI3zvM94zzfO862gRCRuLKiqYrlTVUsb6yivc5Pe62fBbV+av0exwLChCoDE1H2BSN0j07SPRph3+gkO4fC7BkO01LjY0VT8t5f117D2raaOZc2u+U+yoV4Qtk1HGbbQIitAxNsGwixbSCECCyqr2RRfSWLU/8vqPXTUu2ludp3wPux7II+J9m4caMeeeSRed3n6GSMZ7vHebZ7jGd7xtg+EGJBrZ+VzQFWNCW/ZBfUJm/WpoA3pxtVVRmLxBmciLI3OMmekUn2jiT/3zEYIuCrYG1bNWtaqzluUR2Hz7IUZnx8nJqamjmny2lC0Tgv9k2wuW+czb0TvNQ3wWgkzpKGSpY2VLIs5byl2kdLjY/mgI+6yuy/JMfHx/FUBhgKRRkOxRgKRekZjdAVjNAVnGTf6CS9YxEW11dyWGs1h7UEWNOa/OHyu7T0Nx+k55dgODb95bY19eW2LzhJQ8DLorpKFtb7aa+rpCngpSngpbHKR2PAS7Wvgkpv8u9gAVhClVA0wXgkzngkzkQkTnAyzsBElP7xCAMTUfrGo+wdmWQwFKWj1s+SxuSP5OFt1axtc6bExK33kKqyNzjJtoEQu1JB1u7hMHtGJqnyVtBW66etxkdbTfL7qbbSS63fQ12lh9pKD9U+D94KSf55BK8IIhBPJJtixBIJYgklEk9+N41NxhmbjDEaiTM6GadnJMTQZIK+8eT1qvRWsKi+Mhl8Nibv1eWNARbV+11fqpVPZpNfRsIxOodC7BxKXree0Qg9Y5Hpqd8W1PppqPJSX+WlodJLXZWH+kovAV8Ffk8Ffq/g91RQ6alAJDmQraqimnwdjSvhWJxwNEEolpi+z0bCsenvu+FwjJFwjLpKDx21lXTU+VlYn/x/eWMyIM3nw4Nb76NcUVWGwzG6gsnf7L3BSbpGJukbjzIYijI4EcVTITQHpr4fPdT4K6j2ezi7ut8dQV+qp+5OVd0hIgtJDp+SAD7j1qnYcqnenS2ReII9w8ni7h2pJ6He8Qi9Y1FC0Tj1VV7q/J7kl2ulhxpf8kevQoSKiuQUP9F4gslYgsm4MhlL3oiDE8kb0FchNFf7kk8KDZUsqa9kSUMVK5qqaJpjNU4pFqnPZCISZ/dImN3DyRKEvlRAMDARY2AiSjgap9rvIeCrIODzUO17OdiQ1D/xhBKOJgjHkn8TkRgJJBWw+Gis8rKg1j/9tLao3s/CusqyDvBMHCq/xBNK33iEfcEIXaOT9IxGGA7FGA5HU//HCKU8R2IJvB6hKhX8JVSJJ5SEJgO+WELxeyqo8XtSfxXUVXppqfbRWuOjNRXYL66vpKOusmglqqV2DyVUGQnF6BuP0jseoW8swkg4xlgqWBudjDE2GScUSxBPKNF48rpEE4qqvhwEVgjeigq8FUKtPxko1lV6UoGjF0JBjljeQWtNMrh0onSxFMglv0w9/PeORQiGk0FacDJGMBwjOJkM4iLxqb/kb4gqiKT+SAbuvgqhyldBwJv8XqzyJoOMpoCXxrQHtMYqr2PfcaV2H+ULVU3+zoeSQfZE6iF3PBJncXh3wYK+bMvSv01yiBRIzsgBECI5I8dF+UpUPvF4Cv+F4/dUsKolwKqWzMFBw7EEI6EYY5EYo5PJp+KJaJyEQlyVROrHzu+R6VKQSm/yB2/qCaAQ7QcbGrIaVtGVVPs9rG1LVi2YiMaTT7IT0TihaPJ1QjX19Jv8jKcCqrwVqT8PkxOjLGxtmlclELPhUPnFUyF01CWDsOM5+CCrqpoqcUhej+QDEKmHIMFXISVRNV5q91CFCE3VPpqqfRzeVrghkoaHq2hsrC/Y/kuVXPKLiFBX6S3L6u9Su4/yhYikCoIyr+mmTbsLdtxsc9BiVd2V6nRxHrCc1IwceU9Znih29XWVt4KqOj/tODsW3qGIRCLFTkLB8Xkq8HkqsppPuHc8ZgM+A/nMLyKSrIYq8dLS+XAPzQXrxYz1YsZ6cZZsg75gasqzo4DnVXUsNRuGa0cyTiTKfy69uRAKlcfk7vnGejFjvWRinZixXsxYL2asF2fJNuj7T5JDqfiBj6WWnQm8kMc05RWfz7XxaFHp6OgodhJcifVixnrJxDoxY72YsV7MWC/OklX9iqp+BTgXOFNVf5pavBf4YL4Tli+i0Wixk+BKurtd2e+m6FgvZqyXTKwTM9aLGevFjPXiLFm3ClXVFw/23m1UVJR2u6FC4fe7q42hW7BezFgvmVgnZqwXM9aLGevFWbKKiETk1SKyMvV6oYj8SER+ICKuLZ+1QZ+ZurqD97Ccr1gvZqyXTKwTM9aLGevFjPXiLNlGRN8G4qnX3yDZgSNBcsgWVxKLxYqdBFcyMDBQ7CS4EuvFjPWSiXVixnoxY72YsV6cpeyHbPF6y29co3zQ1NRU7CS4EuvFjPWSiXVixnoxY72YsV6cJduSvqkhW15FasiW1HLXdpG1Q7aYsd3kzVgvZqyXTKwTM9aLGevFjPXiLGU/ZIsN+syEw+FiJ8GVWC9mrJdMrBMz1osZ68WM9eIsWQV9qvoVEbkViKvqttRix4ZsEZE3Aa8H6oGbSE4B906S57FOVc+YuY0dp8+MHRvJjPVixnrJxDoxY72YsV7MWC/OMpeurQq8U0T+W0S+CKCqz2SzAxH5voj0isizM5afLyJbRGSriHw648Cqt6nqh4ArgLer6gZVvQK4A/iR6Vh2nD4zdmwkM9aLGeslE+vEjPVixnoxY704S7ZDtrwReAI4AhgE1gKPichFWR73h8D5M/btAW4ELgDWAZeLyLoDbP/51GeneAdws+mDdsgWM1VVVcVOgiuxXsxYL5lYJ2asFzPWixnrxVmybdP3JeBiVb1vaoGInAN8C7h9tjtR1QdFZMWMxacAW1V1e2q/PwUuFpGTgBOAr5HsJXwdcJeqbkp9bhkwoqqjpmPZoM9MIBAodhJcifVixnrJxDoxY72YsV7MWC/Okm3QtwTYMGPZxtTyXFkM7E57vwc4VVW/DPwYQESuJjkNXIOIHKaq3wE+APzgQDvt6+vjzDPPxOv1Eo/HueSSS7jyyivp7u6mpqYGj8dDMBikra2NwcFBVJW2tjZ6enqora0FYGxsjPb2dvr6+hARmpub6evro76+nng8zvj4OB0dHXR3d+Pz+WhoaKC/v5+GhgYikQihUGh6vd/vp66ujoGBAZqamgiFQoTD4en1VVVVBAIBhoaGaGlpYXR0lEgkMr0+EAjg9/sZGRmhtbWVkZERotHo9PrZntPevXs5/PDDy+qc8nGd4vE4Q0NDZXVO+bhOO3fupKOjo6zOKdfrtHPnThYvXlxW55SP6xQOhwmHw2V1Tvm4Trt376a2traszikf12loaIg1a9aU1Tnlep0Kiajq7D8sch/w+9QcvFPLPglcqKrnZHXgZEnfHap6VOr9pcD5qvrB1Pt3kQz6rspmvzPZuHGjHnnkkbnsoiwZGxubzoyWl7FezFgvmVgnZqwXM9aLGeslk02bNj2xfv36kwqx72zrPj8CfFBEukTkERHpAv4W+HAe0rIXWJr2fklqWU7YIVvMjI4aa8PnPdaLGeslE+vEjPVixnoxY704S7bVu1uAVwCnAYtItrF7RFXz0UX2MWBNam7fvcBlJDto5IQN+sxEIpFiJ8GVWC9mrJdMrBMz1osZ68WM9eIssw76Ur1rx4BGVd2Yy0FF5BbgHKBVRPYA/6SqN4nIVcDdgAf4vqo+l8txwI7TdyDs2EhmrBcz1ksm1okZ68WM9WLGenGWWVfvqmoceBFoyfWgqnq5qi5UVZ+qLlHVm1LL71TVw1V1tapem+txwI7TdyDs2EhmrBcz1ksm1okZ68WM9WLGenGWbKt3/w+4Q0T+g2Tv2uleIKr6p3wmLF/YIVvM2G7yZqwXM9ZLJtaJGevFjPVixnpxlmyDvqkOG9fMWK7AqpxTUwBEpNhJcCV+v7/YSXAl1osZ6yUT68SM9WLGejFjvThLVsVgqrryAH+uDPgA4vF4sZPgSkZGRoqdBFdivZixXjKxTsxYL2asFzPWi7NkOw3bDSJyxoxlZ4jI9XlNVR7xerMtzJwftLa2FjsJrsR6MWO9ZGKdmLFezFgvZqwXZ8m2wdvlwOMzlj1BHoZWKRS2pM+MfboyY72YsV4ysU7MWC9mrBcz1ouzZBv0qWEbzxz24xjZzDgyn7C9ms1YL2asl0ysEzPWixnrxYz14izZBmsbgH8TkQqA1P/XkDkfr2uw4/SZsWMjmbFezFgvmVgnZqwXM9aLGevFWbIN+v4eOBfYJyKPkpyR47XAR/OdsHxhnyLM2LGRzFgvZqyXTKwTM9aLGevFjPXiLFn1clDVPSJyAnAKyXlydwOPqqpr5zrzeDzFToIrqampKXYSXIn1YsZ6ycQ6MWO9mLFezFgvzpJ119ZUgPdw6s9Sothg2Iz1YsZ6ycQ6MWO9mLFezFgvzuLaDhj5wvbeNRMMBoudBFdivZixXjKxTsxYL2asFzPWi7OUfdBnO3KYaWtrK3YSXIn1YsZ6ycQ6MWO9mLFezFgvzlL2QV8sFit2ElzJ4OBgsZPgSqwXM9ZLJtaJGevFjPVixnpxlpKarkJE3gS8HqgHbgL2kBwyZgC4V1V/WbTElRh2/EIz1osZ6yUT68SM9WLGejFjvThLUUr6ROT7ItIrIs/OWH6+iGwRka0i8umZ26nqbar6IeAK4O3ABcB/quqHgXebjmWnYTNji9TNWC9mrJdMrBMz1osZ68WM9eIsxare/SFwfvoCEfEAN5IM5NYBl4vIugNs//nUZ38CXCYiXwNaTB+04/SZ6enpKXYSXIn1YsZ6ycQ6MWO9mLFezFgvzlKUYjBVfVBEVsxYfAqwVVW3A4jIT4GLReQk4ATgayQHg74OuEtVN6W2uzIVMP7adKzh4WHOPPNMvF4v8XicSy65hCuvvJLu7m5qamrweDwEg0Ha2toYHBxEVWlra6Onp4fa2loAxsbGaG9vp6+vDxGhubmZvr4+6uvricfjjI+P09HRQXd3Nz6fj4aGBvr7+2loaCASiRAKhabX+/1+6urqGBgYoKmpiVAoRDgcnl5fVVVFIBBgaGiIlpYWRkdHiUQi0+sDgQB+v5+RkRFaW1sZGRkhGo1Or5/tOU0dt5zOKR/XqbKyks7OzrI6p3xcp1AoRG9vb1mdU67XKRQKMTAwUFbnlI/rJCL09vaW1Tnl4zpFo1E6OzvL6pzycZ3C4TDhcLiszinX61RIpFj16amg7w5VPSr1/lLgfFX9YOr9u4BTVfWqtG2uBt4DPAY8Bfwe+CxQA/yXqm6ceZwNGzboUUcdVdiTKUEGBgZoaTEWjs5rrBcz1ksm1okZ68WM9WLGeslk06ZNT6xfv/6kQuy7pHrvquoNqnqiql6hqt9R1Z2q+req+k5TwAd2nL4DMTY2VuwkuBLrxYz1kol1YsZ6MWO9mLFenMVNQd9eklO7TbEktSwn7Dh9Ztrb24udBFdivZixXjKxTsxYL2asFzPWi7O4Keh7DFgjIitFxA9cBtye607tOH1m+vr6ip0EV2K9mLFeMrFOzFgvZqwXM9aLsxRryJZbgL8Aa0Vkj4h8QFVjwFXA3cBm4Oeq+lwx0jcfEJFiJ8GVWC9mrJdMrBMz1osZ68WM9eIsxeq9e/kBlt8J3JnPY9lx+sw0NzcXOwmuxHoxY71kYp2YsV7MWC9mrBdncVP1bkGw4/SZsUXqZqwXM9ZLJtaJGevFjPVixnpxlrIP+jweT7GT4Erq6+uLnQRXYr2YsV4ysU7MWC9mrBcz1ouzlH3QZzFjh7IxY72YsV4ysU7MWC9mrBcz1ouzlH3QZzOUmfHx8WInwZVYL2asl0ysEzPWixnrxYz14ixlH/TZcfrMdHR0FDsJrsR6MWO9ZGKdmLFezFgvZqwXZyn7oM925DBT6Pn9ShXrxYz1kol1YsZ6MWO9mLFenKXsg77h4eFiJ8GV3HbbbcVOgiuxXsxYL5lYJ2asFzPWixnrJZPBwcHWQu3bBn3zlF//+tfFToIrsV7MWC+ZWCdmrBcz1osZ6yWTYDDYVqh9l33Qp6rFToIrsdPTmbFezFgvmVgnZqwXM9aLGevFWaTcg6I777xztLKyckux0+E2BgcHW5ubm/uLnQ63Yb2YsV4ysU7MWC9mrBcz1ksmk5OTay+88MK6Quy77IM+i8VisVgsFss8qN61WCwWi8Visdigz2KxWCwWi2VeYIM+i8VisVgslnlASQR9IrJURO4TkedF5DkR+fvU8q+JyAsi8rSI3CoijanlfhH5gYg8IyJ/FZFz0vZ1eWr50yLyexFpTS2/RkT2ishTqb8Li3CqWZFnL29Pff45EflK2vJKEfmZiGwVkUdEZIWzZ5k9Dnl5r4j0peWXDzp8mllzEC//mjrHp0TkDyKyKLVcROSG1LV/WkROSNvXe0TkpdTfe9KWn5jyuDW1rTh/prPHISf3i8iWtLyywPkzzY48e/m9iAyLyB0zjrEy9Z2yNfUd43f2LLPHIS8/FJEdafnlOEdPcg7ky4uIHCcif0nt42kReXvaMUoqvzjkJPu8oqqu/wMWAiekXtcBLwLrgNcB3tTyrwBfSb2+EvhB6vUC4AmSAa4X6AVaU+u+ClyTen0N8I/FPtcieWkBdgFtqXU/AtanXn8E+E7q9WXAz4p93i7x8l7gW8U+1zx5qU/7zNVp1/tC4C5AgNOAR1LLm4Htqf+bUq+bUuseTX1WUtteUOzzdoGT+4GTin2uxfCSWrceeCNwx4xj/By4LPX6O8CHi33eLvHyQ+DSYp9rMbwAhwNrUq8XAfuAxlLMLw45yTqvlERJn6ruU9VNqdejwGZgsar+QVWnBvl5GFiSer0O+FPq873AMHASSZkC1IiIAPVAl1PnkW/y6GUV8JKq9qU+dw/wltTri0kGOwC/BNan3LkWh7yUHAfxEkz7WA0w1aX/YuDHmuRhoFFEFgLnAX9U1UFVHQL+CJyfWlevqg9r8hvpx8CbHDm5OVJoJ46dSJ7JoxdU9V5gNH3/qe+Q15D8ToHkd8ybCnQ6eaPQXkqVfHlR1RdV9aXUfrpIFtK0lWJ+KbSTuaarJIK+dCRZvXg88MiMVe8nGSUD/BW4SES8IrISOBFYqqpR4MPAMySDvXXATWn7uCpVfPp9EWkq4GnknVy8AFuBtSKyQkS8JG+mpaltFgO7AVIB0wjJErCSoIBeAN6Syi+/FJH05a5nphcRuVZEdgPvBL6Y+tj0tU+xJ7XsYMv3GJaXBAVyMsUPUtUvX3D7Q9NMcvRyIFqA4bSHsJLKK1AwL1Ncm/pu+XcRqcxfqgtPvryIyCmAH9hGieeXAjmZIqu8UlJBn4jUAr8CPpYeLYvI54AY8H+pRd8nKexx4Hrgz0BcRHwkg77jSRaTPg18JrXNfwGrgeNIFp9+o7Bnkz9y9ZIqmfgw8DNgA7ATiDuU/IJRYC+/BVao6jEkS3WmSkNdj8mLqn5OVZeSdHJVMdNXDArs5J2qejRwVurvXbmm1ylsXjFTYC+fAY4ATibZXOBTOSbXMfLlJVUa+hPgfaqaKFR6naDATrLOKyUT9KUCtl8B/6eqv05b/l7gDSS/WBWSJVKq+v9U9ThVvRhoJFmfflxq/bbUZ38OnJFa1qOq8ZTM/wFOcercciFPXlDV36rqqap6OrBlajmwl1TpVqq0qwEYcOLccqHQXlR1QFUnU7v9HsnSQddzIC9p/B8vV2FPX/sUS1LLDrZ8iWG5qymwE1R16v9R4GZK/Lsljdl4ORADJKuvvLP8vGsosJepakFNfb/8gHmWX0SkHvgd8LlUNSeUaH4psJM55ZWSCPpS1SE3AZtV9Ztpy88HPglcpKoTacurRaQm9fq1QExVnycpcJ2ITNWHv5ZkPftUFD3Fm4FnC3hKeSGPXpBUj8JUtfZHSAYyALcDUz0RLwX+NBUsuRUnvMzILxeRykdu5iBe1qR97GLghdTr24F3S5LTgBFV3QfcDbxORJpSXl4H3J1aFxSR01LHejfwm8Kf2dwptJNUk4GpEQJ8JB84Svm7JVsvRlLfIfeR/E6B5HeMq/MKFN5Lal8L0471JuZRfpFkj9xbSbZtm2q/V5L5pdBOUvvKPq+oC3q5HOoPeCXJxo5PA0+l/i4k2eZqd9qyqV4wK0iWymwm2fh+edq+rkgtf5pkFV1LavlPSLb1ezolf2Gxz9thL7cAz6f+LktbXgX8IrXPR4FVxT5vl3j5MvAcyfaA9wFHFPu8c/DyK5JfFlP3xOLU5wW4kWT7kWdI64FKsk3k1tTf+9KWn5Ta1zbgW5Cc6tGtf4V2QrKh9hOp/TwH/AfgKfZ5O+xlA9AHhEg2ozgvtXxV6jtlK8nvmMpin7dLvPwp9dlngf8Faot93k55Af4GiKbt4ynguFLMLw45yTqv2Ll3LRaLxWKxWOYBJVG9a7FYLBaLxWLJDRv0WSwWi8ViscwDbNBnsVgsFovFMg+wQZ/FYrFYLBbLPMAGfRaLxWKxWCzzABv0WSwWi8ViscwDbNBnsVgsFovFMg+wQZ/FYrGUCSJSJSJ/JyKXFTstFovFfdigz2KxWAAR2Ski55bCsUXkyyLyMcOq9cCDQEdq2jdE5FEROTI/KbVYLKWMDfosFovFQXINLlNzh78b+G/D6vuAc4FeVY2mln0d+Je5Hs9isZQPNuizWCyW0uK9wJ2qGjKsiwKvVNWb05bdDrxaRDqcSJzFYnEvNuizWCyuQETeJyK/TXv/koj8Iu39bhE5TkQ+LSLbRGRURJ4XkTenfeZTIvLLGfv9DxG5IfV6kYj8SkT6RGSHiFx9gLQc9HOp0rp/FJGnRWRERH4mIlWpdSeIyJOp9P0ite7fUut+AiwDfisiYyLyybTdHmfan4ELgAcOsO4jwEUi4plaoKph4AngvANsY7FY5gk26LNYLG7hAeAsEakQkUWAHzgdQERWAbXA08A24CygAfhn4H9FZGFqHz8FLhSRutR2HuBtwM0iUgH8FvgrsJhk+7ePich+wdBsP5fa7/nASuAY4L0i4gduBX4INAO3ANNBqaq+C9gFvFFVa1X1qwfb3wE8HQ1smblQRFqBNsAHrJqxejNw7AH2Z7FY5gk26LNYLK5AVbcDo8BxwNnA3UCXiBwBvArYoKoJVf2FqnalXv8MeAk4JbWPTmATLwdarwEmVPVh4GSgTVX/RVUjqeP9DzCzp+tsP3dDKh2DJIPE44DTAG9qXVRVfw08OksFpv2ZaEx5mskngf8AdgDrZqwbTW1nsVjmMd5iJ8BisVjSeAA4Bzgs9XqYZMB3euo9IvJu4OPAitQ2tUBr2j5uBi4Hfgy8I/UeYDmwSESG0z7rATbMSMNsP9ed9noCWJT626uqmrZut/FMMzHtz8QQUJe+QESOBsZUtU9EtpAM+n6T9pE6ki4tFss8xpb0WSwWNzEV9J2Vev0AyaDvVcADIrKcZKnbVUCLqjYCzwKSto9fAOeIyBKSJX5TQd9uYIeqNqb91anqhTPSMNvPmdgHLBaR9PQsnfEZJTeeBg6fsewLwISIXEGyWnxmSd8rSFZXWyyWeYwN+iwWi5t4AHg1EFDVPSRL184HWoAngRqSQVMfJDt/AEel70BV+4D7gR+QDN42p1Y9CoymOnsERMQjIkeJyMkz0jDbz5n4CxAHrhIRr4hcTKrqOY0eMtvcZcOdJINgAETkUuA2Vf26qn4H+AlwZNr6KuBE4I85HNNisZQBNuizWCyuQVVfBMZIVaWqahDYDjykqnFVfR74Bsngqodkp4aHDLu6meR4ddNDl6hqHHgDybZyO4B+4HskO4SQ7ecOkP4IcAnwAZLVqX8D3AFMpn3sy8DnRWRYRP7xUPs08GOSnVUCqUD0K8DjMB3gLQOOFpHTU59/I3C/qnbN4VgWi6WMkP2bnlgsFosln4jII8B3VPUHedznl0gOwHz9LI//AVV9Nl/Ht1gspYkN+iwWiyWPiMirSA6p0g+8E/gOsEpV9xU1YRaLZd5je+9aLBZLflkL/Jxk+8PtwKU24LNYLG7AlvRZLBaLxWKxzANsRw6LxWKxWCyWeYAN+iwWi8VisVjmATbos1gsFovFYpkH2KDPYrFYLBaLZR5ggz6LxWKxWCyWeYAN+iwWi8VisVjmATbos1gsFovFYpkH/H/A2NjeRgb0fgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 720x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure(figsize=(10,3))\n",
"ax=fig.add_subplot(111)\n",
"plt.plot(1.e8/nus,xsv,lw=1,label=\"exojax\")\n",
"plt.yscale(\"log\")\n",
"plt.xlabel(\"wavelength ($\\AA$)\")\n",
"plt.ylabel(\"cross section ($cm^{2}$)\")\n",
"plt.xlim(22985.,23025)\n",
"plt.legend(loc=\"upper left\")\n",
"plt.savefig(\"co_exomol.pdf\", bbox_inches=\"tight\", pad_inches=0.0)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Important Note"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use float64 for wavenumber bin and line center.\n",
"\n",
"Below, we see the difference of opacity between float64 case and float 32."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:46:18.371290Z",
"iopub.status.busy": "2022-10-20T05:46:18.371014Z",
"iopub.status.idle": "2022-10-20T05:47:40.706237Z",
"shell.execute_reply": "2022-10-20T05:47:40.706459Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 8257/8257 [02:51<00:00, 48.08it/s]\n",
"/home/kawahara/exojax/src/exojax/spec/lpf.py:363: UserWarning: The wavenumber grid is not np.float64 but float32\n",
" warnings.warn('The wavenumber grid is not np.float64 but '+str(nu.dtype),UserWarning)\n",
"/home/kawahara/exojax/src/exojax/spec/lpf.py:365: UserWarning: The line centers (nu_lines) are not np.float64 but float32\n",
" warnings.warn('The line centers (nu_lines) are not np.float64 but '+str(nu.dtype),UserWarning)\n"
]
}
],
"source": [
"xsv_32=auto_xsection(np.float32(nus),np.float32(nu0),sigmaD,gammaL,Sij,memory_size=30) "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2022-10-20T05:47:40.720432Z",
"iopub.status.busy": "2022-10-20T05:47:40.720136Z",
"iopub.status.idle": "2022-10-20T05:47:41.094823Z",
"shell.execute_reply": "2022-10-20T05:47:41.094529Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF4CAYAAADOlCTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9wUlEQVR4nO29eZwcZZ34//70NfdMJjOTTEggHBIghEMXkUO8onKsgrLueq14gaC43t9dr/Xr6g/FVVyv/YoHh/etCIiLCiKIIEoWIQkkJEDINclk7ruPen5/VPWkM/3M2d3VVTWf9+s1r+mu6q5+6v08VfWp5yoxxqAoiqIoiqJEl1i1E6AoiqIoiqJUFg34FEVRFEVRIo4GfIqiKIqiKBFHAz5FURRFUZSIowGfoiiKoihKxNGAT1EURVEUJeIkqp2ASnLXXXeZmpqaaicjcBhjEJFqJyNwqBc76qUYdWJHvdhRL3bUSzGjo6MH1q9f31GJbUc64AM4/vjjq52EwLFjxw5Wr15d7WQEDvViR70Uo07sqBc76sWOeilmw4YNOyq17Ug36cZikd69BVNbW1vtJAQS9WJHvRSjTuyoFzvqxY568ZdIR0Qa8Nmpq6urdhICiXqxo16KUSd21Isd9WJHvfhLpCOibDZb7SQEkr6+vmonIZCoFzvqpRh1Yke92FEvdtSLv0Q64EskIt9FcUG0tbVVOwmBRL3YUS/FqBM76sWOerGjXvwl0gGf4zjVTkIgGRoaqnYSAol6saNeilEndtSLHfViR734iwZ8i5B0Ol3tJAQS9WJHvRSjTuyoFzvqxY568ZdIB3zJZLLaSQgknZ2d1U5CIFEvdtRLMerEjnqxo17sqBd/iXTAl8lkqp2EQNLV1VXtJAQS9WJHvRSjTuyoFzvqxY568ZdIB3w6LYsdHQpvR73YUS/FqBM76sWOerGjXvwl0hGRPrLFTiqVqnYSAol6saNeilEndtSLHfViR734S6QDvlwuV+0kBJKBgYFqJyGQqBc76qUYdWJHvdhRL3bUi79EOuDTefjstLe3VzsJgUS92FEvxagTO+rFjnqxo178JdIBn9bw2dG7KjvqxY56KUad2FEvdtSLHfXiL5EO+Iwx1U5CINHRy3bUix31Uow6saNe7KgXO+rFXyId8Ok8fHZ07iM76sWOeilGndhRL3bUix314i+RDvj07sGOzn1kR73YUS/FqBM76sWOerGjXvwl0gFfPB6vdhICSUNDQ7WTEEjUix31Uow6saNe7KgXO+rFXyId8Cl2NBC2o17sqJdi1Ikd9WJHvdhRL/4S6YBPR+naGRwcrHYSAol6saNeilEndtSLHfViR734S6QDPh20Yaejo6PaSQgk6sWOeilGndhRL3bUix314i+RDviy2Wy1kxBIent7q52EQKJe7KiXYtSJHfViR73YUS/+EumAT7Gj8xPaUS921Esx6sSOerGjXuyoF3+JdMCnj1azo9XodtSLHfVSjDqxo17sqBc76sVfIh3w6Tx8dvbt21ftJAQS9WJHvRSjTuyoFzvqxY568ZdIB3w65NtOY2NjtZMQSNSLHfVSjDqxo17sqBc76sVfQhPwicjRInKdiPzUe79WRH4sIl8VkVdVO32KoiiKoihBxfeAT0SuF5H9IrJxyvLzRGSLiGwTkQ9O/Z4x5gljzFsLFp0PfNkY83bgEttv6Tx8doaHh6udhECiXuyol2LUiR31Yke92FEv/lKNGr4bgfMKF4hIHPhv3CBuLfBaEVk7y3a+A7xGRD4LtNk+oPPw2Vm+fHm1kxBI1Isd9VKMOrGjXuyoFzvqxV98D/iMMXcDUyffOR3Y5tXipYEfAheJyCUi8gURWWnZzn5jzJXAB4EDtt/SefjsdHd3VzsJgUS92FEvxagTO+rFjnqxo178JSjzlqwEdha83wU8xxjzaeDbACLSBlwFPFNEPgT8APgw0AB81rbR3t5ezj77bBKJBLlcjosvvpgrr7ySrq4uGhoaiMfjDA4O0tHRQW9vL8YYOjo62Ldv32Rn0uHhYZYvX053dzciwtKlS+nu7qa5uZlcLsfIyAidnZ10dXWRTCZpaWnhwIEDtLS0kE6nGRsbm1yfSqVoamqip6eH1tZWxsbGGB8fn1xfW1tLXV0dfX19tLW1MTQ0RDqdnlxfV1dHKpViYGCA9vZ2BgYGyGQyk+vnuk/9/f10dHREap/KkU/GGHbs2BGpfSpHPvX391NTUxOpfSo1n/r7+6mvr4/UPpUjn9LpNPv374/UPpUjn4aHh9mxY0ek9qkc+TQwMBC5fSo1nyqJVGPiQxE5ErjVGLPOe/8q4DxjzKXe+zfgBnzvLOV37r33XrN27Wwtw4uP0dHRyYuVchD1Yke9FKNO7KgXO+rFjnopZsOGDQ+uX7/+tEpsOyijdHcDhxe8X+UtKwmdh8+OVqPbUS921Esx6sSOerGjXuyoF38JSsD3F+BYETlKRFLAa4CbS92ozsNnp7m5udpJCCTqxY56KUad2FEvdtSLHfXiL9WYluUHwH3AcSKyS0TeaozJAu8EbgceBX5sjNnkd9oWCzpdjR31Yke9FKNO7KgXO+rFjnrxl2qM0n2tMWaFMSZpjFlljLnOW36bMWaNMeYYY8xV5fgtLUx2RkZGqp2EQKJe7KiXYtSJHfViR73YKYcXx3HY/MeHcRynDCmKNkFp0q0IOg+fnc7OzmonIZCoFzvqpZjpnCz2i0+YyorjOGy8529svOehiudXmLz4STm8PPanjWy6/KM89qeNs394kRPpgE8Hbdgpdeh3VC9qlR4SX078zIMwefGL6Zws9otPmMrKY3/ayJZLP8SWSz9c8fwKkxc/Kce1yDGGE679BMefta5MqYoukQ74RKTaSQgkpdZ8RvWiFpYaYcdxuPMbN7PpbR/xJQ/C4sVPbE704hOusnL8Wes47puf5rhvfqri+RUmL35SjmvRo1f8OzGJEYtFOpwpC5E2pKN07bS0tJT0/ePOPJFjP3g5x515YplSFAxK9eIXj/1pI31fup7Wd7/Vl8AiLF78xOZELz7hKiuxWIx155zCunNOrXh+hcmLn5Tq5fiz1rH2a5/ksOYU1ZhTOGxE+qykj1azc+CA9Ul0c2Z48zYOfPF6hjdvK1OKgkGpXvzi+LPWceLX/j9edNmFvgQWYfHiJzYn+XxZc8baSHZ5mAtaVuyoFzuleonFYqxqqeWvb/kIgxu3lilV0SXSAZ/W8Nkp9a6qe8Uqbn7tpXSvWFWmFAWDsNyFx2Ix1j73ZN9qkcLixU9sTvL5svX+zZHs8jAXtKzYUS92yuElqtejShDpgE+reO2k0+mSvn9MWz3/csk5TDy2LVK1GKV6iSrqpZiZnORr+hZjP76wlRW/Bj+FzYtflMPLMW31vPtNz+eYNn1E22xEOuCLUjBSTsbGxkr6voiQ2fIEmy//90jVYpTqxW/8uliFzYsfzOTE7xrYIBG2suLXALSwefGLcngREY5pq9dBmnMg0mckHRllpxxzH0WxFiNsc2X5dbEKmxc/UCd2wuIlf7O05oy1vpzHwuLFb9SLv0Q64NN5+OyUY06oKNZihGWuLGMM23tGOe7ME325WIXFi5+oEzth8ZK/Wdp6/2ZfzmNh8eI36sVfonO1thClYKScpFKpaichkITFy/aeUb544x94sm/cl4tVWLz4iTqxExYvfrdQhMWL35TiJaoPAKgkkY6INOCz09TUVO0kBJKweOnYu4sLf/BNOvbu8uX3wuLFT9SJnbB48buFIixe/KYUL1F9AEAliXREpPPw2enp6al2EgJJWLw0r1vD6Td+muZ1a3z5vbB48ZOpTrS2wUXLih31YqcUL1HsR15pIh3wJRKJaichkLS2ti74u1G+sJXixU9EhOZ1a3wblRYWL34y1YnWNrhoWbGjXuyU4iWK/cgrTaRNRTEoKQelDIWP8oVNp06wo16KmepEaxtctKzYUS921Iu/aMC3CBkfH1/wd6N8YSvFS5RRL8VMdVJY22CMYXDj1kU58buWFTvqxY568ZdIB3w6D5+dUuY+inI1us4JZUe9FDOTk8GNW3ngTR9alM/21LJiR73YKZeXKHc1KiczXrVF5Fki8n0RuUpE6kXkWBH5iF+JKxWdh89OueY+itpBpnNC2VEvxczkZDE/21PLih31YqdcXqLc1aiczFZN8zLgcuC7wLuBLuD5lU5UuYhiLVQ5qK2tLct2onaQlctL1FAvxczkZDE/21PLih31YqdcXqLc1aiczDaM9RHgBGPMA8CjIvJyYEnFU1UmNOCzU1dXV5btHH/WOojQQVYuL1FDvRQzk5P8sz0XI2EsK8YYnugd4+ildRUb+R5GL35QLi/5rkbKzMwWET0CnJ1/Y4y5Bfh0RVNURnQePjt9fX1l2U7U+vOVy4tf+DU4IGxe/ECd2Amjl/yTa7b3jFbsN8LoxQ/Ui7/MeKU2xmwzxvzXlGW/yL8WkaMqlbCpiMgrROQbIvIjEXnp1Pe27+g8fHba2tqqnYRAEjYvfg0OCJsXP1AndsLoxY8n14TRix+oF3+Zd9WMiBwjIi8TkTagVkReNc/vXy8i+0Vk45Tl54nIFhHZJiIfnPo9Y8xNxpjLgCuAV099b/utqAwmKDdDQ0PVTkIgCZsXvwYHhM2LH6gTO2H04seTa8LoxQ/Ui78spC3u48DfA/fgNu++aJ7fvxE4r3CBiMSB/wbOB9YCrxWRtdN8/6PeZ6d7P4kGfHbS6XS1kxBIwubFr8EBYfPiB+rEThi8TJ1dwI8n14TBSzVQL/6ykIDv+8aYtxtj1gKfAb41ny8bY+4GeqcsPh3YZox5whiTBn4IXCQil4jIF0Rkpbh8Bvi1MWbD1Pe239J5+OzonFB2wuCl8GKVHxxQ6UeshcGL36gTO2HwUo3ZBcLgpRqoF39ZSCe3tIgc7QVn95UpHSuBnQXvdwHPMcZ8Gvg2gIi8C3gx0CIizwBShe+NMddO3ej+/fu57LLLSCQS5HI5Lr74Yq688kq6urpoaGggHo8zODhIR0cHvb29GGPo6Ohg3759NDY2AjA8PMzy5cvp7u5GRFi6dCnd3d00NzeTy+UYGRmhs7OTrq4ukskkLS0tHDhwgJaWFtLpNGNjY5PrU6kUTU1N9PT00NraytjYGOPj45Pra2trqauro6+vj7a2NoaGhkin05Pr6+rqSKVSDAwM0N7ezsDAAJlMZnL9XPdp9+7drFmzJlL7VI58yuVyxOPxQO/TA7+5n+6PfIHBz/0bK9au8iWftmzZQmdnZ2DyKQhlb+vWraxcuTJS+1SOfBofH59Md1D3qeHwFjo//T6OOPVoduzY4Us+7dixg8bGxsDkU1DKXl9fH8cee+yC9mnv3r3kntzN8mefQk9PT2D2qdR8qiQy3xF+IvId4AxgO/Ab4FZjzLx6jYvIkd731nnvXwWcZ4y51Hv/BtyA753zStwU7r77bnPSSSeVsolIsn//fpYtW1btZASOMHhxHIfH/rSR489a59vo6DB48Rt1Yke92FEvdkrxMvDIFv7y5g/z7Bs+RctJx5U5ZdVjw4YND65fv/60Smx7IVeMm4wxxwJXAqPA+8uQjt3A4QXvV3nLSqLSTV1hJZVKVTsJgSQMXqoxFU4YvPiNOrGjXuyoFzuleFnMT7RZKAu5ajgAxpjtxphrjTGXlyEdfwGOFZGjRCQFvAa4udSN5nK5khMWRQYGBqqdhECiXuyol2KmOonaYwYXipYVO+rFTileFvMTbRbKQgK+c0TkDhF5i4jMO7QWkR8A9wHHicguEXmrMSYLvBO4HXgU+LExZtMC0nYIOg+fnfb29gV9L+oXtYV6iTrqpZipTqL2mMGFomXFjnqxU4oXvwatRYmFBHwbgf8DdAA3ishd8/myMea1xpgVxpikMWaVMeY6b/ltxpg1xphjjDFXLSBdRWgNn52F3lVF/aKmd+F21EsxU53oszxdtKzYUS921Iu/LKQK7H7gcGPMZ0Tky8BYmdNUNir9yKmwkslkFvS9qD07dyoL9RJ11EsxU53oszxdtKzYUS921Iu/LKSG71vAH73XRwPnli855UXn4bOz0LmPovbs3KnonFB21Esxsznx6znHQUPLih31YqecXqLe5agcLOTK/TFjzAiAMWYjENgek3r3YKfSc/2EFfViR70UM5sTv55zHDS0rNhRL3bK6SXqXY7KwUICvmd7z9HNE9hno8Tj8WonIZA0NDSUbVtRuqsqp5cooV6Kmc3JYp0yQsuKHfVip5xetB/t7Cwk4Psm8GsR+X8i8l7g7DKnSakw5QyEo3RXpTcIdtRLMbM5WaxTRoS1rFT6xjWsXipNOb1EvctROZi3GWPMHuAFuHPnjQCfKnOayoaO0rUzODhYtm1F6a6qnF78whjD9p7RivYVC6OXSjObk8U6ZUQYyoqtf2Wlb1zD4KUaqBd/WVAobIwZNcbcYIz5ujFmqNyJKhc6aMNOR0dH2bYVpbuqcnrxi+09o3zxxj+wvWe0Yr8RRi+VRp3YCYMXW//KSt+4hsFLNViolyh1JfKT8F+lZyCbzVY7CYGkt7fXunyxH0TTeQkKtvzp2LuLC3/wTTr27qrY7wbdSzVQJ3bC4MXWv7LSN65h8FINFupluhrZxX4Nm41IB3wTo+PVTkIgma75L38Q3fmNmxflAROUKTSmO2nZTnLN69Zw+o2fpnndmoqlJyhegkShk+nyazFOzRLkfXUch433/I2xzY/zL5ec42v/yiB7qSYL9TJdjWyU+pRXgkgHfA3NjdVOQiCZrhr9+LPW0fqut9D3xesW5Z1TUJpdpjtp2U5yIkLzujUV7SsWFC9BwXEcerbtnzwWpsuvxTg1S5DLymN/2siWSz/E1ss+TGbLE0XHTCXPcUH2Uk0W4sVxHB7700aOP2tdUY1slPqUV4I5B3wi8gUReXYlE1NudB4+O/v27bMuj8VivOiyCznx61fN+c4pSoHgdF785viz1nHCtZ/EMc6k15lOcpXOg6B4CQqP/Wkjj1/5Hzz2p404joNjDCdc+4miY2YxTs0S5LKy5oy1NL/3Uo61nN+gsrVDQfZSTRbiRWvxFs58avgE+KWIPC4i/yEix1UqUeUiM56JRCBSbhobp6/5nK4vy5oz1tL6rrew5oy1hyyP0sE3kxc/icVixER49IqPTXqdyXOl8yAoXoLC8WetY9Xn/hXHOGy+92EeveLfiUms6Jg5pq2ef7nkHCYe27ZozkNBLitb799M/5dvJBGPW/vqTXeOKwdB9lJN5utlphss0G5JszHngM8Y825gFfAO4HDgfhF5UETeV6nElUp6Z1ckAhE/mK2WaOv9m+n70vVsvX/zIctttVHKwsnnw5oz1h7SNDHTxUjzwD/yNa0Aj17xMfZuemLai4+IMPHYdh5764fYfO8jfidVmcJszX35c9xd192qx1FA2Xzvw2y59EMA1qB9pm5Jyjz78BljHGPMb40xbwHWAT3AZyuSsjIg7a0VuVsLO8PDw0XLZqolmumuylYbFVZsXvwmnw9b7998SE3rdAE3HDzxbbn0wxUJLILgJSjk82diYpwl//ImBq75BmC/+LiYKf+jTVDLykxdIvJUMlgIqpdqMx8vjuOwd9MTYAxug2Mx+W5JJ3zt/9MbYAvzCvhEpEFE/llEfgVsBbLAGyuSsjJgDvRZL5CLneXLlxctm+nu97E/bZy22Sr/3SjUMNm8+I0tH2ZrxnCpXGARBC9BIZ8/p597FitOPAaJCdNdfADWnn0yx33z0wChPjbmSlDLyly6PVQyWAiql2ozVy/GGB7+3q/p/9INtLz/ctaefdK0ny2shNCm3UOZz6CNnwD7gLcBtwKrjTEXGGO+W6nElUpy5bLQByGVoLu7u2hZYd+9wubduQQbUTnAbF78Zmo+bLznb9zx9Zt49PKPThtwQ2UDiyB4CQr5/Onp6WHt2SdxwnVX68WngCCWlbndMLlUKr+C6CUIzMWL4zg89N1f0f2Fb/KMD13Oiy67cNb5Eo8/a51XA/817U5RwHxq+P4CrDXGPM8Y81VjzIFKJapsLKIT7XyYbQqP/N3w5nsf4c5v3DxrsAHROMCC9hiszfc+wuNv/lcGrvkGre9+64wXq0oGFkHzEgREZM6T9Ubh2JgrQSsrjuPM+RyWpxL5FTQvQWEuXjbf+zDbP/n/uOMFf0/T+S+cUx7GYjFWnHg0IOzdtF2v/x7zDfjiACLSKSLfEpEbRKSzMkkrnfqm+sk+GRr0HWTp0qUzrs83WzmOw8A1X2fJu948pzvjsB9gs3nxH4MTi9Py/svmfFdbifIePC/VI1/7vWTJkjl/JwrHxlwJWlnZfO/Dcz6H5SnMrz2PbGPjPQ+VnGdB8xIUZvOS77cnGF68/uR5TZa99uyTaXn/2+j/0g3c8fWbypKPYWc+Ad//A3Le688DScABvl7uRJWLbDbLiy67kCXvevOiuLueK7NVo8diMY4/ax37Hn0SMKw48Zg53VUVHmBhDLCD1uyy9uyTOeH6q1n/tlfM+a62EuU9aF6qRb62aNPbPsJff/fAvL4b9mNjrgSlrOS7Q+x5ZDvzOYflyefX0Be+yZa3frjkPAuKl6Axk5f88Zbvt/ei806bV01p/nzY+u63Mvj5b/D4m/910ccAiXl8dqUx5mkRSQDnAquBNLCnIikrA3FvvqUVJx7NoHd3vfbskyr2vMSw0NzcPOP6wgOtdZYOsoXkD7A7jOMGHGuPYt05p5Qjyb4wmxc/mDqacO1zT57X9wvL+55HtgGGtWeX9ozQIHipNvljou+L19H67rdy0jzLdf7YuBPo++J1/PKpPbz8k28jkZjPKTj4BKGs5PNq4JqvATJrJ38b+fzavPYo9jyyjYFrvsYdxpnzzddUguAliEznJZvNcsu/f53sTbfR+p5L59TCYePQa9I3ynZODCvz2eNBEVkOPB/YbIzJj6dOlj9Z5WWx3F3PlVwuV7Ss8Lmfj/1pI31fup7Wd7913gdamJuvbF78phyTKJe7diIIXqqJ4zjc8fWb6P/c11jyrjfzossuXNAzQPMXn8RF55O68Xvc8u9fD9XxMReqXVYK86rpPZdy3HWfKilYWHfOKRx20jHEnBwD13xjwcdStb0Elale8jWzt3z0WlI3fo/EKy5YcP7licVirH/bK1jygcsnz4m//Mi1ZLPZUpMfOuZze/ll3H58KeA93rKzgcfKnCYrIvIK4O+BZuA63NrFTwKbgB8aY+6a+p18YVosd9dzZWRkhPb29kOWDW7cyl/e/GGefcOn3L4u3tQgCznQ1p59Ml3vfxt9X7yOO4AVJx4dijsqmxe/cByHzfc+guM4cxpNOBPlrp2oppdqks+TvZu2M/j5bxA3ucmmwYU6icVivPyTb+MWIHvTbdyxujM0x8dcqFZZseXVYSc9oywtDGvPPhlu+Cx7N21f8PVjsR5Ds1HoJV+r5/z0ZpAY6Te9npd/8m1lOS4Kz4mP/+oe94bLOBz798+NzLE3F+ZcYo0xnxGRXwA5Y8x2b/Fu4NL5/KCIXA+8DNhvjFlXsPw84Iu4A0O+aYy5esrv3wTcJCKtwOeAbwPDQC2wy/ZbyeTBysd8hv/yqT1uZgMXXXXFosnoQjo7i8fZ5J/7eeSKVbQsoCmxkMIAe+CarzHs5Nj7gSsWHHD4hc2LHxxyoovFOOG6q0v2lK+dAMPjXu3EQoPvanmpJvmaoqHPfhUnlqDl/Zd57tymwVKcJBIJLrrqCu488rBQHR9zoRplZba8KpX8sbT27JP45Y4uUjd+j5sdh6ajDuOFl144p8BvMR5Dc2HZsmVsvOdvOI7D9l/fS+pbPyD9xtdWJBDL5+PxZ57ILRLD+enNbPn5bTz+Dy9bNBVAMtemCRF5njHmbsvy1xpjfjDnHxR5Hm6g9u18wCcicdyJnF+CG7z9BXitMaZo1mQRuQb4HvCQMcbxmpk/b4x5/dTP3nXXXeaUUw69w5vsG/CL20i88oJFk9GF7Nixg9WrVwMH74yNMdSe8Aye0d5QtikEpj8RB/OOqtCLH+TdP/6reyp2opta8xFzcjTOM7jw20s1mauvcjiZenw0v+8yRJhzEBFE/Cwr2WyW33/TbWId/sJ1CyrbC/nNW/7965gf/YKasdE5H7OL6RiaK47jcNPnvgNfc6fyNfEkMZ+CL9u595jzzyYWk6pfnzZs2PDg+vXrT6vEtudj9acicgPwUWNMRkSWAF8DngnMOeAzxtwtIkdOWXw6sM0Y8wSAiPwQuEhETgOehfv4tj3A1cCvjTEbCr7bB9TYfssWuOTvrn8Ji7ZaN5lMen0lHmb7r/+I87NbJ2uWpGPhNXtTyfed2HziMZMX0CDXZhTWCFeaqRf7fPNFuU90hbUTdwBDn/0qA9d8g18+tYdjzj+bdeecMms++OmlWuQvALsf2cbINdfOeoNSDidTj4+hz15LzegIt3h5E4SLz3ypdFkp7Pqw/df3UnPjDxhvaKD5/1zhy81k/vqx8byzJs+dW35+G49ffMGMx9NiOIbmQj7/stkcT97+J5yf3kpchIb3X8Fh6/yrDLDV9m3/6c0A7PE5LX4ynxq+w4AbgOW4/fk+DtwGvM8YMzKvH3UDvlsLavheBZxnjLnUe/8G4DnGmHcWfOdduI9x+wvwELAfd7TwEuCrtj58N910k/nwhz9MIpEgl8tx8cUXc+WVV9LV1UVNTQ13X/NDYr/4H4jFSP/9ejqfewpnnH8W3d3dNDY2Au6z/pYvX053dzciwtKlS+nu7qa5uZlcLsfIyAidnZ10dXWRTCZpaWnhwIEDtLS0kE6nGRsbm1yfSqVoamqip6eH1tZWxsbGGB8fn1xfW1tLXV0dfX19tLW1MTQ0RDqdnlxfV1dHKpViYGCA9vZ2BgYGyGQyk+sbGhqIx+MMDg7S0dFBb28vxhg6OjrYt28fjY2NOI7D3+7aQHbfIKP/9XVqRkcZfcOraT9jLSc//5kYYyqyTz09PTx2y18Y+8I3cOJxGt/9FkZHxzjjn19CfX19SftUrnxqaWlhYGCgovm0a9cuNt98PxiY+Op3iZkcsSv+mWf+4/NZvnx52fepMJ8aGhrYcMcD7Lv3EZq++1PGGxqof++ljI6O8ZzXv5impibrPu3cuZPm5uaSy14Qj6dEIsFDv3+Qnvs3Izf9mpjjuE9Ke9vree6bzieZTFr3adeuXbS2tpZtn5YtW8Z9t/2Rrj8+TM2tv0W8dMSvuITmozs54/yz2b9/vy/niFL2qaamhlgsVpF8evgPGxh7+gBjX7wOACeRJH3+izjixadzwlknMjw87GvZm/Z4Ghml/fgjOfn5pzIwMEBbWxs9PT0Agcknv69Pe/bsYc+mnez6/YPEf3k78VyW1PgYff/4StZe9Hxaj26fHLHr9z7V1NTw0O//yuiOA4x/yS1bxAQuex0dJxxFKpVk2XErWLZsmS/51NPTU7EavjkHfAAiUgf8GTgRuM4Y87YF/egCAr6FYGvSLaSwWjd/p9j4gStC36wylcK74r2bnmDkc9fixP1vQipsLsvXZgSpKr1SzS75pqeO41bz5O33TZa1Jp9qJaZLj+M4jFzz9VnzIWrNUfna7a5N2zGYOTmYSqWcTK1pBK+p6+ILOOrcM0kk4lU/TmainF4Kj5t9jz416UOqUCM0l3Tmj6fakZHJawnG0Hni0TQdsYSjjjqqqun0k8KavP2PPll0nB117ll0b3mKo19yCsccc0y1kwvYj718K2HD+69g2fFH0r3lqYpfLyvZpDufGr5Tge8C24BvAl8AHgDeYYzpn9ePFgd8ZwIfN8ac673/EIAx5tPz2e5U7rnnHrNu3eyjHae7AOYLZViDv+kKsDHQ9H+q16w6tTk5ZtxpDurfezmxuFTNd39//7yeoDATtiBvoq4WJ1lDbJbmH7+YLh+mntyGh4fL5qUaTHfxKbwwz/fGp5xlZaY0FzZdTtTWQiLu68VnvpTipTAQX3bCkYccN8TjAIEK9KZiu5HIl7HUv7yZVCrFshOODHzQvhAKy6vjGLe59me3EstmqRkbm/Y4q/RxtBCKKkjy107HkBofm4wN9j/6JJ0nHl3283hQAr4e4F+NMdd57xuALwEvNcYcPq8fLQ74EriDNtbjjvz9C/A6Y8ym+Wx3Knfffbc56aS5j9QqugBms4dkcBBPsFOZ7a64c+1RDA0NceYFz636CWdqQCo5h9TEeMUPqOnYv38/y5YtW9B3Z7pY5YO8oNbQWG8MCk5ubWeeyPjuXl/zolRsx4HkHGrGx4tqXxayT6WUlfmS35dcNsfof7kPNrJdfIIQTMzVy9QAYWogPvW4icVigWgFmCvTBX9Tg/ag5Nt8mHoDteyEIw+91swjMPLzOFoIcw1kMYZlJxwJSMlxQlACvqPzgyqmLL/QGHPznH9Q5AfAC4B2YB/wf40x14nIBbi1hnHgemPMVXPd5nTM1qQ7HUUdSwuCv4lLXkvj6hUsO+HIqp6EbCfMud4VB62JbjrflTqgpmOuXgpP5h3Hr6b7sR0zXqzCcjKf9uSWyRQFSvn9rvbFqjCwA5nxOKh/7+WIUJbAtRrH0GwXn6nlrtCHX3k01YvtWLEFCLZjPSzHzWw4jsNdv7iD7L5BHMc5JGifLd+qdY2ZegNbmKapN1BTrzXzqX0O2rVoNmZqLZioqwWkKE4odDeX61cgAr4wcu+995q1a9eWtI2pwYj58S+pHR21FvLCTC1H7dTUwjXbCXOud8UTExPU1FgHNleduR5QU2s28s7zjhbifmxsjO1/3XrInevUg3VqmtKpGlLpiUherPJ5MT4+Tu/ju6z7PdPFyvZ6tnyZ6UIzNY+LAjtkXsdBKQThGLLVtMzm48iXnjHpbra8ms75TJ/t2rSNzhOPYaZjZbpzZ5hqkOdLvrzM6Ua9IN9snuaaF6Xkp+28OzVN+RuoUgLTIBxHpWA7XxXFCYXuZrl+LTvhSMYT6SfOv/CCinRsjHTAt9AavumYmrnTBV35DJ6uRmSuB+bUO/jZTphzDTTCdFc13QE1tWYj73y6AGwuJ8BHf/l7am67w7rd2fI1yherfHmZrrZm2ovVNO7kHy+cNjic8UIzJY+rWaMV1GNothrPQ84hs+TVdM7n873pzoFha6ItldnKy3T5ZrvGLDQv5pOfM50/y5l3QT2OSmG2m9aZrl8TdbV0fuZdXHD5m8ozGe4UIh3wzbcP33yZ7m5t1rvbOR6YU+8EynXC3Lt3LytWrCi7D7+w1WxMvXOdS+Aw9QSYzEzMeOdVrprbsDFbeZnuYmV7PfzUbmq//aMFXWhstRPVqkkN2zGUz6P2NUdUtIbvqb9u5MjTTmSxHivTsdDyYrvG+FHD51e+he04KgczXb+0hq8E/vjHP5oTTzyxar8/XY3IXA/MSvVVGx4enpwfKKrMpWlw6gmwa+N2XvKOfwj0oJxqUM7yMltwGJYAYTEcQwtBvdhRL3bUSzHah2+BlLtJNypEsRq9HKgXO+qlGHViR73YUS921EsxlQz4gn0bXSJaU2Mn/4QA5VDUix31Uow6saNe7KgXO+rFXyId8DmOU+0kBJKxsbFqJyGQqBc76qUYdWJHvdhRL3bUi79owLcIGR8fr3YSAol6saNeilEndtSLHfViR734S6QDvmQyWe0kBJLOzs5qJyGQqBc76qUYdWJHvdhRL3bUi79EOuDLZDLVTkIg6erqqnYSAol6saNeilEndtSLHfViR734S6QDvqBP7VAtamtrq52EQKJe7KiXYtSJHfViR73YUS/+EumISAM+O3V1ddVOQiBRL3bUSzHqxI56saNe7KgXf4l0RJTNZqudhEDS19dX7SQEEvViR70Uo07sqBc76sWOevGXSAd8Og+fnba2tmonIZCoFzvqpRh1Yke92FEvdtSLv0Q64NNpWewMDQ1VOwmBRL3YUS/FqBM76sWOerGjXvxFA75FSDqdrnYSAol6saNeilEndtSLHfViR734S6QDPp2Hz47OfWRHvdhRL8WoEzvqxY56saNe/CXSAZ/Ow2dH5z6yo17sqJdi1Ikd9WJHvdhRL/4S6YBPp2Wxo0Ph7agXO+qlGHViR73YUS921Iu/RDoiEpFqJyGQpFKpaichkKgXO+qlGHViR73YUS921Iu/RDrgy+Vy1U5CIBkYGKh2EgKJerGjXopRJ3bUix31Yke9+EtoJqoTkVcAfw80A9cBjwFfAnqBrcaYq6d+R+fhs9Pe3l7tJAQS9WJHvRSjTuyoFzvqxY568Rffa/hE5HoR2S8iG6csP09EtojINhH54NTvGWNuMsZcBlwBvBo4CfipMeYtwDNtv6U1fHb0rsqOerGjXopRJ3bUix31Yke9+Es1mnRvBM4rXCAiceC/gfOBtcBrRWTtNN//qPfZ+4G3isidwP/YPmiMKVOSo4WOXrajXuyol2LUiR31Yke92FEv/uJ7wGeMuRu3GbaQ04FtxpgnjDFp4IfARSJyiYh8QURWistngF8bYzYAbwb+rzHmRbhNvUXoPHx2dO4jO+rFjnopRp3YUS921Isd9eIvQenkthLYWfB+F/AcY8yngW8DiMi7gBcDLSLyDNxavY+LyOuAp2wb3b9/P5dddhmJRIJcLsfFF1/MlVdeSVdXFw0NDcTjcQYHB+no6KC3txdjDB0dHezbt4/GxkYAhoeHWb58Od3d3YgIS5cupbu7m+bmZnK5HCMjI3R2dtLV1UUymaSlpYUDBw7Q0tJCOp1mbGxscn0qlaKpqYmenh5aW1sZGxtjfHx8cn1tbS11dXX09fXR1tbG0NAQ6XR6cn1dXR2pVIqBgQHa29sZGBggk8lMrp/rPu3evZs1a9ZEap/KkU+5XI54PB6pfSpHPm3ZsoXOzs5I7VOp+bR161ZWrlwZqX0qRz6Nj49Ppjsq+1SOfNqxYweNjY2R2qdy5FNfXx/HHntspPap1HyqJFKNZk8RORK41Rizznv/KuA8Y8yl3vs34AZ87yzld+655x6zbt26UpMbOQ4cOKCdZS2oFzvqpRh1Yke92FEvdtRLMRs2bHhw/fr1p1Vi20GZlmU3cHjB+1XeMqUCxOPxaichkKgXO+qlGHViR73YUS921Iu/BCXg+wtwrIgcJSIp4DXAzaVuVEfp2hkcHKx2EgKJerGjXopRJ3bUix31Yke9+Es1pmX5AXAfcJyI7BKRtxpjssA7gduBR4EfG2M2lfpbOmjDTkdHR7WTEEjUix31Uow6saNe7KgXO+rFX3wftGGMee00y28Dbivnb2Wz2XJuLjL09vZSX19f7WQEDvViR70Uo07sqBc76sWOevGXoDTpKj6i8xPaUS921Esx6sSOerGjXuyoF3+JdMCnj1azo9XodtSLHfVSjDqxo17sqBc76sVfIh3w6Szedvbt21ftJAQS9WJHvRSjTuyoFzvqxY568ZdIB3w65NtOfjJI5VDUix31Uow6saNe7KgXO+rFXyId8CmKoiiKoigRD/h0Hj47w8PD1U5CIFEvdtRLMerEjnqxo17sqBd/iXTAp/Pw2Vm+fHm1kxBI1Isd9VKMOrGjXuyoFzvqxV8iHfDpPHx2uru7q52EQKJe7KiXYtSJHfViR73YUS/+EumAT7EjItVOQiBRL3bUSzHqxI56saNe7KgXf4l0wKfz8NlZunRptZMQSNSLHfVSjDqxo17sqBc76sVfIh3w6Tx8drQa3Y56saNeilEndtSLHfViR734S6QDPp2Hz05zc3O1kxBI1Isd9VKMOrGjXuyoFzvqxV8iHfApdnS6GjvqxY56KUad2FEvdtSLHfXiL5EO+LQw2RkZGal2EgKJerGjXopRJ3bUix31Yke9+EukAz6dh89OZ2dntZMQSNSLHfVSjDqxo17sqBc76sVfIh3w6aANO11dXdVOQiBRL3bUSzHqxI56saNe7KgXf4l0wNff31/tJASSm266qdpJCCTqxY56KUad2FEvdtSLHfVSTG9vb3ultq0B3yLk5z//ebWTEEjUix31Uow6saNe7KgXO+qlmMHBwY5KbTvSAZ8xptpJCCT6yDk76sWOeilGndhRL3bUix314i8S5aDotttuG6qpqdlS7XQEjd7e3valS5ceqHY6goZ6saNeilEndtSLHfViR70UMzExcdwFF1zQVIltRzrgUxRFURRFUSLepKsoiqIoiqJowKcoiqIoihJ5Ah/wicjhIvJ7EdksIptE5N3e8s+KyGMi8rCI/EJElnjLUyJyg4g8IiJ/E5EXFGzrtd7yh0Xkf0Sk3Vv+cRHZLSIPeX8XVGFX50WZvbza+/wmEflMwfIaEfmRiGwTkT+LyJH+7uX88cnLm0Sku6C8XOrzbs6bGbx80tvHh0TkNyJymLdcRORLXt4/LCLPKtjWG0Xkce/vjQXL/87zuM37rvi/p3PHJyd3iciWgrKyzP89nR9l9vI/ItIvIrdO+Y2jvHPKNu8ck/J3L+ePT15uFJEnC8rLqb7u5AIolxcROVVE7vO28bCIvLrgN0JVXnxyMv+yYowJ9B+wAniW97oJ2AqsBV4KJLzlnwE+472+ErjBe70MeBA3sE0A+4F2b91/Ah/3Xn8c+EC197VKXtqAp4EOb923gPXe63cA13qvXwP8qNr7HRAvbwK+Uu19LZOX5oLPvKsgvy8Afg0IcAbwZ2/5UuAJ73+r97rVW/eA91nxvnt+tfc7AE7uAk6r9r5Ww4u3bj3wcuDWKb/xY+A13utrgbdXe78D4uVG4FXV3tdqeAHWAMd6rw8D9gJLwlhefHIy77IS+Bo+Y8xeY8wG7/UQ8Ciw0hjzG2NMfkz3/cAq7/Va4E7v8/uBfuA0XJECNIiIAM3AHr/2o9yU0cvRwOPGmG7vc78D/sF7fRFuoAPwU2C95y6w+OQldMzgZbDgYw1AfhTXRcC3jcv9wBIRWQGcC/zWGNNrjOkDfguc561rNsbcb9yz0beBV/iycwuk0k5825EyU0YvGGPuAIYKt++dQ16Ee04B9xzzigrtTtmotJewUi4vxpitxpjHve3swa2g6Qhjeam0k4WmK/ABXyHiNik+E/jzlFVvwY2OAf4GXCgiCRE5Cvg74HBjTAZ4O/AIbqC3FriuYBvv9KpMrxeR1gruRtkpxQuwDThORI4UkQTugXS4952VwE4AL1gawK35CgUV9ALwD155+amIFC4PPFO9iMhVIrITeD3wMe9jk3nvsctbNtPyXZbloaBCTvLc4DW5/HvQb5imUqKX6WgD+gtuwEJVVqBiXvJc5Z1b/ktEasqX6spTLi8icjqQArYT8vJSISd55lVWQhPwiUgj8DPgPYVRsoh8BMgC3/MWXY8r66/AF4A/ATkRSeIGfM/ErRp9GPiQ952vAscAp+JWmV5T2b0pH6V68Wok3g78CLgHeArI+ZT8ilFhL7cARxpjTsatzcnXggYemxdjzEeMMYfjOnlnNdNXDSrs5PXGmJOAc7y/N5SaXr/QsmKnwl4+BBwPPBu3i8C/lZhc3yiXF68W9DvAm40xTqXS6wcVdjLvshKKgM8L1n4GfM8Y8/OC5W8CXoZ7UjXg1kQZY95rjDnVGHMRsAS3/fxUb/1277M/Bs7ylu0zxuQ8kd8ATvdr30qhTF4wxtxijHmOMeZMYEt+ObAbr1bLq+VqAXr82LdSqLQXY0yPMWbC2+w3cWsFA890Xgr4HgebrSfz3mOVt2ym5assywNNhZ1gjMn/HwK+T8jPLQXMxct09OA2WSXm+PnAUGEv+aZA451fbmCRlRcRaQZ+BXzEa9qEkJaXCjtZUFkJfMDnNYFcBzxqjPl8wfLzgH8FLjTGjBYsrxeRBu/1S4CsMWYzrry1IpJv/34Jbrt6PnrO80pgYwV3qSyU0QvijRz0mrLfgRvEANwM5Eccvgq4Mx8oBRU/vEwpLxfilaMgM4OXYws+dhHwmPf6ZuAScTkDGDDG7AVuB14qIq2el5cCt3vrBkXkDO+3LgF+Wfk9WziVduJ1E8jPBJDEvdkI87llvl6seOeQ3+OeU8A9xwS6rEDlvXjbWlHwW69gEZUXcUfe/gK3L1u+v14oy0ulnXjbmn9ZMQEY0TLTH/Bc3I6NDwMPeX8X4Pax2lmwLD/a5Ujc2phHcTvary7Y1hXe8odxm+XavOXfwe3b97AnfkW199tnLz8ANnt/rylYXgv8xNvmA8DR1d7vgHj5NLAJt//f74Hjq73fJXj5Ge6JIn9MrPQ+L8B/4/YXeYSCkaa4fSC3eX9vLlh+mret7cBXwH2ST1D/Ku0Et1P2g952NgFfBOLV3m+fvdwDdANjuF0nzvWWH+2dU7bhnmNqqr3fAfFyp/fZjcB3gcZq77dfXoB/BjIF23gIODWM5cUnJ/MuK/poNUVRFEVRlIgT+CZdRVEURVEUpTQ04FMURVEURYk4GvApiqIoiqJEHA34FEVRFEVRIo4GfIqiKIqiKBFHAz5FURRFUZSIowGfoiiKoihKxNGAT1EURVEUJeJowKcoiqIoihJxNOBTFEVRFEWJOBrwKYqiKIqiRBwN+BRFURRFUSKOBnyKoiiKoigRRwM+RVEURVGUiKMBn6IoiqIoSsTRgE9RFEVRFCXiaMCnKIqiKIoScRLVTkAlueuuu0xNTU21kxE4jDGISLWTETjUix31Uow6saNe7KgXO+qlmNHR0QPr16/vqMS2Ix3wARx//PHVTkLg2LFjB6tXr652MgKHerGjXopRJ3bUix31Yke9FLNhw4Ydldp2pJt0Y7FI796Cqa2trXYSAol6saNeilEndtSLHfViR734S6QjIg347NTV1VU7CYFEvdhRL8WoEzvqxY56saNe/CXSEVE2m612EgJJX19ftZMQSNSLHfVSjDqxo17sqBc76sVfIt2HL5Eo3j1jDMPDwxhjqpCiYNDY2Mjg4GBZtykiNDY2hroDbltbW7WTEEjUSzHqxI56saNe7KgXf4l0wOc4TtGy4eFhampqSKVSVUhRMEin02Xf/3Q6zfDwME1NTWXdrp8MDQ3R2NhY7WQEDvVSjDqxo17sqBc76sVfIt2kawv4jDGLOtgDKlK7mUqlQl9rmk6nq52EQKJeilEndtSLHfViR734S2ADPhE5T0S2iMg2EfmgZf37RGSziDwsIneISNHY7mQy6U9iQ4Z6sdPZ2VntJAQS9VKMOrGjXuyoFzvqxV8CGfCJSBz4b+B8YC3wWhFZO+Vj/wucZow5Gfgp8J9Tt5PJZCqd1LJw9dVX8+Uvf5lPfepT3HXXXQDcd999nHnmmTzvec9jbGyMj33sY5x55pl87GMfK/n3wuLFb7q6uqqdhECiXopRJ3bUix31Yke9+EtQ+/CdDmwzxjwBICI/BC4CNuc/YIz5fcHn7wf+eepGwjYty4c//OHJ1z/5yU9473vfyz/90z8B8K1vfYsnnniCeDw+p21ls1nroBUInxe/0CkC7KiXYtSJHfViR73YUS/+EtSAbyWws+D9LuA5M3z+rcCvpy4M8ojRa665hh/+8Ie0t7ezcuVKTjnlFK688kpe+tKXMjAwwE033cSdd97J7373O4aHhxkZGeGFL3wh73nPe3je857H+973Pnbv3g3AVVddxRlnnMHVV1/NU089xVNPPcWqVau4+uqrrZ/77Gc/y549e9ixYwe7du3iiiuu4PLLLwfghz/8IV/5ylcQEU488USuvfZaDhw4YN1O1FjsfTunQ70Uo07sqBc76sWOevGXoAZ8c0ZE/hk4DXj+1HUHDhzg7LPPJpFIkMvluPjii3nzm9/MxMQEsVgMESGXy02uB3cql0wmM1mTlsvlSCaTk3P6xeNxstks8XgcYwyO45BMJslkMojInNY/+OCD/PznP+d3v/sdmUyGc889l3Xr1uE4Do7j8OpXv5r77ruPF7/4xbzsZS8jmUxyxBFHcMcddyAiXH755Vx++eU8+9nPZufOnbzuda/j7rvvxnEcHnvsMW666Saampp429vexmWXXcbZZ5/Nk08+yete9zruvfdecrkcjz/+OD/96U8ZHh7muc99Lq9//et56qmn+NznPsfNN99MZ2cn+/fvJ51O88EPfpBLL72Us846i507d/LqV7+a+++/v2ifM5kM+/btY3x8nM7OTrq6uqitraWuro6+vj7a2toYGhoinU5Prq+rqyOVSjEwMEB7ezsDAwNkMpnJ9Q0NDcTjcQYHB+no6KC3txdjDB0dHezbt29yhNfw8DDLly+nu7sbEWHp0qV0d3fT3NxMLpdjZGRkcpvJZJKWlhYOHDhAS0sL6XSasbExcrkcAwMDpFIpmpqa6OnpobW1lbGxsdDuU359Kfv09NNPT47sjso+lZpPTz/99OQ5Iyr7VI58Gh8fj9w+lSOfdu/ezcDAQKT2qRz51NfXR21tbaT2qdR8qiQSxJGVInIm8HFjzLne+w8BGGM+PeVzLwa+DDzfGLN/6nb++Mc/mhNPPPGQZYODgzQ3N1cq6XPiq1/9Kn19fZNNuB/5yEfo7Ozkscce46UvfSkXXXTRZG3fRRddBMDhhx/Ozp1upeeaNWsO6eza09PDn//858mauX/7t3+b8XNf/vKXSaVSvP/97wfgOc95Dj//+c/51a9+xf79+/noRz96SHqn287U4fRBcFsKIyMjNDQ0VDsZgUO9FKNO7KgXO+rFjnopZsOGDQ+uX7/+tEpsO6g1fH8BjhWRo4DdwGuA1xV+QESeCXwNOM8W7AGTd+Az8dJv/m/JiZ3Kby59Ztm3WYjjOPzmN7+xPoewvr5+1s85jnNIVXo8Hp/R1Uy/FyUGBgb05GNBvRSjTuyoFzvqxY568ZdABnzGmKyIvBO4HYgD1xtjNonIJ4C/GmNuBj4LNAI/8frqPW2MuXDKdmb9rUoHZzbOOussrrzySt773veSzWa5/fbbeeMb3zjn77/whS/k61//Ou9617sAeOSRRzjppJMW/Lk855xzDpdccgnveMc7WLp0KX19fbS2ts57O2FFRy/bUS/FqBM76sWOerGjXvwlsMM1jTG3GWPWGGOOMcZc5S37mBfsYYx5sTFmuTHmVO/vwqnbCOp8c6eccgqvfOUred7znsc//dM/8cxnzi/ovPrqq3nooYd47nOfyxlnnMENN9wwr89NN0r3hBNO4H3vex8ve9nLOOeccyabduf6e2FH54Syo16KUSd21Isd9WJHvfhLIPvwlYu77rrLnHLKKYcsC3s/s3IwMTFBTU1N2bcbdrc7duxg9eqi+bsXPeqlGHViR73YUS921EsxlezDF9gavnIw1znrFhs6D58d7UtiR70Uo07sqBc76sWOevEXvfIvQoI8P2E10RsEO+qlGHViR73YUS921Iu/RDrgm8so3cWIerEzODhY7SQEEvVSjDqxo17sqBc76sVfIh3wBXXQRrWZ7pFri52Ojo5qJyGQqJdi1Ikd9WJHvdhRL/4S6YAv/3SMQkSEdDpdhdQEh0rU8KXT6dA3Fff29lY7CYFEvRSjTuyoFzvqxY568ZdFV9XT2NjI8PAw4+Pj1U5K1ajE7OYiUvTkjbAR5RHrpaBeilEndtSLHfViR734S6QDPlvTpYjQ1NRUhdQEh1QqFfmnZiwEbV6wo16KUSd21Isd9WJHvfhLpJt0dRZvO/v27at2EgKJerGjXopRJ3bUix31Yke9+EukAz4d8m0n7E2vlUK92FEvxagTO+rFjnqxo178JdIBn6IoiqIoihLxgE/nm7MzPDxc7SQEEvViR70UM5sTZ5F2RteyYke92FEv/hLpgE/n4bOzfPnyaichkKgXO+qlmJmc7B2c4L23bPUxNcFBy4od9WJHvfhLpAM+2zx8CnR3d1c7CYFEvdhRL8XM5GQ4nWNwfHG2LmhZsaNe7KgXf4l0wKfYCfsEyZVCvdhRL8XM5CTrGLLO4mzS1bJiR73YUS/+EumATx8hZmfp0qXVTkIgUS921EsxMznJOYaM4/iYmuCgZcWOerGjXvwl0gGfzsNnR6vR7agXO+qlmJmc5BxDNrc4a/i0rNhRL3bUi79EOuDTefjsNDc3VzsJgUS92FEvxczkZDE36WpZsaNe7KgXf4l0wKfY0elq7KgXO+qlmJmc5Iwhs0gDPi0rdtSLHfXiL5EO+LQw2RkZGal2EgKJerGjXoqZyUl2ETfpalmxo17sqBd/iXTAp/Pw2ens7Kx2EgKJerGjXoqZyUnWMRjcvnyLDS0rdtSLHfXiL5EO+HTQhp2urq5qJyGQqBc76qWYmZzkvAG6i7Efn5YVO+rFjnrxl0gHfDrHjx2t+bSjXuyol2JmcpKv2VuMAZ+WFTvqxY568ZdIB3w6StdOS0tLtZMQSNSLHfVSzExO8oFeJrf45uLTsmJHvdhRL/4S6YBPH61m58CBA9VOQiBRL3bUSzEzOcku4ho+LSt21Isd9eIvgQ34ROQ8EdkiIttE5IOW9c8TkQ0ikhWRV9m2oTV8dvSuyo56saNeipnJiWO8Gr5FGPBpWbGjXuyoF38JZMAnInHgv4HzgbXAa0Vk7ZSPPQ28Cfj+dNsxZvGdcOdCOp2udhICiXqxo16KmcnJZA3fIpyaRcuKHfViR734S1AfNns6sM0Y8wSAiPwQuAjYnP+AMeYpb920HWWcRfo8y9kYGxurdhICiXqxo16KmcnJYm7S1bJiR73YUS/+EsgaPmAlsLPg/S5v2bzQEUB2dO4jO+rFjnopZiYn+VG6i7FJV8uKHfViR734S0k1fCLSBlwArDDG/KeIHAbEjDG7ypK6Etm/fz+XXXYZiUSCXC7HxRdfzJVXXklXVxcNDQ3E43EGBwfp6Oigt7cXYwwdHR3s27ePxsZGAIaHh1m+fDnd3d2ICEuXLqW7u5vm5mZyuRwjIyN0dnbS1dVFMpmkpaWFAwcO0NLSQjqdZmxsbHJ9KpWiqamJnp4eWltbGRsbY3x8fHJ9bW0tdXV19PX10dbWxtDQEOl0enJ9XV0dqVSKgYEB2tvbGRgYIJPJTK6f6z7t3r2bNWvWRGqfypFPuVyOeDweqX0qRz5t2bKFzs7OSO1Tqfm0detWVq5cad2nsQm3ZaGvf4ADjIZmn8qRT+Pj45Ppjso+lSOfduzYQWNjY6T2qRz51NfXx7HHHhupfSo1nyqJLLSfm4g8H/gZ8FfgbGNMk7fsA8aYl5eUKJEzgY8bY8713n8IwBjzactnbwRuNcb8dOq6u+++25x00kmlJCWS7N27lxUrVlQ7GYFDvdhRL8XM5OTGv+7h+w/t43N//wxOXtHkc8qqi5YVO+rFjnopZsOGDQ+uX7/+tEpsu5Qm3S8ArzbGnAfk5z/5M27/u1L5C3CsiBwlIingNcDN891ILBbUFuvq0tS0uC5Cc0W92FEvxczkZLJJdxEO2tCyYke92FEv/lJKRHSkMeYO73X+zJamDANBjDFZ4J3A7cCjwI+NMZtE5BMiciGAiDxbRHYB/wh8TUQ2Td2OzsNnp6enp9pJCCTqxY56KWYmJ4t50IaWFTvqxY568ZdSgrPNInKuMeb2gmUvBh4pMU0AGGNuA26bsuxjBa//AqyaaRuJRFAHIVeX1tbWaichkKgXO+qlmJmcZL3JARbjoA0tK3bUi51yetm0b5hkPMaa9vqybTNqlFLD937geyLyLaBORL4G3Aj8n3IkrBzotCx2dCi8HfViR70UM5OTnFm88/CFpaw8un+EL927c/YPlomwePGbcnq596kBHnh6oGzbiyILDviMMfcDJwObgOuBJ4HTvZq3QKABn53x8fFqJyGQqBc76qWYmZzkFnGTbljKyv7hNLsHJnz7vbB48ZtyesnknEVZqz4fFtzmKSI1QLcx5j8LliVFpMYY49+RNAM6D58dnfvIjnqxo16KmclJ1jEIizPgC0tZmcg6ZHysEAiLF78pp5d0zpBahLXq86GUJt3fAn83Zdnf4Q60CASZTKbaSQgkC53r59H9I/zob/vKnJrgUOk5kMKKeilmJidZx1CTiC3KgC8sZWUi6/g6ijosXvymnF4yjtEavlkoJeA7CXcalkIeAE4pYZtlRadlsVNbW7ug7+0aGOex/SNlTk1wWKgXP3lg5wD9Y/7eyITBi9/M5CTnBXyZ3OLrUhKWsuIGfP7lT1i8+E05vWRyzqLsNzsfSomIBoDlU5YtBwITEWjAZ6eurm5B38vkTKRrLRbqxU9+9sh+Huse9fU3w+DFb2ZyknMMtYu0hi8sZWU8Z0j7GByExYvflNNLOmd8baYPI6VERD8Dvi8i60SkXkROAr4N/Lg8SSsdnYfPTl9f34K+l414lflCvfhJxjG+T+gbBi9+M5OTrGOoTS7OgC8sZSXtc5NuWLz4TSle/u22xw+ppc3k/M3TMFJKwPcR3EmRHwCGgPuBLcCHy5CusqDz8Nlpa2tb0PfSORPpKvOFevETt5bV37vYMHjxm5mc5Ixbw7cYLz5hKSt+N+mGxYvfLNSLMYaH9gwzkS0M+KJdIVEOSpmWZdwYcyXQAHQCjcaYdxpjAjP+XKdlsTM0NLSg77nD3qPrdKFe/CST87+GLwxe/GYmJ9lF3KQblrIynvV3Co+wePGbhXrJGffxXoV5mIl4hUQ5KKkKTERagOOARu89AMaYO0tOWRnQgM9OOp1e0PeqEWz4yUK9+Ek1mtXD4MVvZnKSc6B+kTbphqWspHOOr334wuLFbxbqJe3V7BUeY+mIV0iUg1Lm4XsT8N/AMFDYi9wAR5eWrPKg8/DZWejcRxkn2oM2wjBXVjX6qYTBi9/M5CTnGOqSMcazi+/iE5ay4neTbli8+E0p1yJwKyEcY3j/rY9HvkKiHJTSh+8q4FXGmOXGmKMK/gIR7IHOwzcdC537KJtzIh3whWGuLLfZwt9AIgxe/Ga2efiW1CUZSed8TFEwCEtZmcgaHHPwqSiVJixe/GahXvLBejZnmMg6bNo3wnA6F+nrUzkoJeBLAL8pV0IqgU7LYmfB07JUYYSon4Rh6oRqTC4aBi9+M5OTrGNorUswNLH4ZgkIS1nJd/ZP+3TzFBYvfrNQL/nm+IzjTObl4Hg20tenclBKRPQZ4KMiEtioKt+nUDmUVCq1oO9FfR6+hXrxk2o06YbBi9/M5CTn1fANTSy+Gr4wlJVfbNzP3iH36Z9+HUth8FINFn4tcrz/holsPvjzfwaDsFFKsPZe4KPAkIg8XfhXprSVTC63+E64c2FgYGBB33ODjegeUAv14ifV6EcZBi9+M5OTnDEsqV2cNXxhKCu3b+2le8Tt7uNXbXkYvFSDhXrJ1/BlHcN4Nle0XLFTyijdfy5bKiqEzsNnp729fUHfi3oN30K9+IUxxuuY7G/QHXQv1WAmJwebdBffDWcYyspopjBA8OdYCoOXalDKtSj/P1/DB0T6+lQOSpmH7w/T/ZUzgaWgNXx2bHdVX71v1+RQ9+mI+sOpg34Xnj+ZaQ1f9ZnJSdYxtNQlGEnncEx0jxcbYSgro95gmrqkf5Njh8FLNVh4DZ/XpOs4h4yG1z58M7PggE9EakTkKhF5QkQGvGUvFZF3li95pWEW2cl2rkwdvWyM4ZZHD3BgdOZRzfmJLaPqNWijuj/xuycYHD/YLJgP9PxutgialyAwk5OcY0jFY9Ql44tupG7Qy4oxhtGMGyA0puK+1ZYH3Uu1WKiXwhq+wiZdreGbmVL68P0XsA54Pe7cewCbgLeXmqhyofPw2Zk691Haa6rtG5sl4HMcDBDVYypIc2U5xnD/04N0jxycmDSTq04NX5C8BIWZnIymc9QlYjTVxBdds27Qy0pht5SmmrhvNUJB91ItFj4P38GJlwubdKPcx7wclBLwvRJ4nTHmPsABMMbsBlaWI2HlQO+q7Eyd+yhfC9E/NnMn8/zJ8Rebug95hmFUCNJcWf1jWbKOOSRgOHhXq/PwVZvpnIxlDjYXugHf4hq4EfSyMlLQf68+GfettjzoXqrFQr2ks4V9+NzzYV0yFukuR+WglIAvzZRBHyLSAfSUlKIyEo/Hq52EQNLQ0HDI+8mAb3xuAd+Nf93DroHAPDK5bEz1Uk3yNXvDhQGfU/w4IT8IkpegMJ2T/vEsS+qSiAiNqcU3cCPoZWU07bC8McX5x7WRjItvN09B91ItFuolfy4czzqT16+6ZCzSXY7KQSkB30+Ab4nIUQAisgL4CvDDciRMqRxTA+G51vDl5zhK5wyD49G7kAXpBqF72K2dLqwhKuy34idB8lJtso7hE797Ylon/WNZltS598FL6xP0ztIvNmoEvayMZnI01cR57zlHkIr7VyMUdC/VYqFe8jWzP354Hzc+uBeAmngMEdBxG9NTSsD3YeBJ4BFgCfA4sAf4j9KTVR50lK6dwcHBQ94fDPhmvjgVNn8MzFIbGEameqkm+Rq+oXRxk27/eJY/7ej3LS1B8lJtBsez/PGpAfb32kcX9o9lWVLrBnwdDSn2jyyugC/oZWU0naM+6QYZbg2fP9FB0L1Ui4V6yefbgZEMI+kc9ckYybj7p/34pmdBAZ+IxHEnXf6gMaYRWA40GWPea4xJz/xt/9BBG3Y6OjoOeT+SziHAroGJGQduZHKG/LNLBiPYN2mql2rSPZKhIXVop/98M8aW7lGu/8te39ISJC/VJl/uE41LrOvdJl034FvWmKJ7ODCnQ18IelkZzTjUJd3LXjIe820evqB7qRYL9ZLPt3z3liV1CVJxIRnzL4gPIwsK+IwxOeAdQMZ7320C2HCezUYvKCkHvb29h7wfSedob0jy4O4hPnXnU9N+L+McPFnO1vwbRqZ6qSY9oxlWL6lluCCwzhacyPYNTfjWVyVIXqpNPgDfub/Pur5/LFNQw5dkR9+4r7Wx1SboZWUknaM+5dbwpXys4Qu6l2qxUC9T821JbZJkXEjGRadmmYFSmnS/DVxRroQo/jE1UBhJ5zh5RSP1yRhNNdM/nSSTM9R5zSFRrOELwj3L/7tvF4PjWfrHshy+pOaQGr60Y6j3Au6JnKHPp6A7CF6CQn5exAHLYIy9gxMMjGdpqXNbFjoaUmzeP8IX7tnpW01StQlqWXGM8ebgy9GQb9KN+df8F1Qv1WahXjI5h7gcfN9alyAZixET4ebN3WVKXfQoJeA7HfiiiDwlIveIyN35v3IkTETOE5EtIrJNRD5oWV8jIj/y1v9ZRI6c+hl9tJqdoibdjMNhzTX8x0uOpn/cbdLd3jPK9p7Ryc/ctKmboYncZA1fFPvwVbvZJesYbtrUzfaeMQbGsxzeUjsZ8PWPZfj+/3ZNBtwAXUNpX/Kh2l6CxKCXH07q0NGF+4bSfOBXj9M/lqWl1s2jZY1u4Nc/nuVNP9rM3U/08XR/9Ea3FxLUsvKhX2/n4b3DjGUc6lNek25CmPCphi+oXqrNQrz0jGbY0Tc+WVML8OzDm3nbGSvpGc3w/Yf2sXtgYtYnRy1GSgn4vgFcCvxf4JvAdQV/JeH1Efxv4HxgLfBaEVk75WNvBfqMMc/AnQT6M1O3o/Pw2dm3b9/ka2MMg+NZGlJxWuuSk021393QxWf/8DTdI2nufqKPG/66B3DnrhLcmo78XXNUKPTiJ44xpLMO9z/tDgTIGUP/eIZVS2oYmsjywM4Bfvd4L3/bOzwZcAPsHBjnjT/aVPH0VctLEMmPmt514NBBGxM5h+F0jpF0jsaUe6PZkIpz2qomTlvVRM9ohs/e/TT/+qvHuebuHfzv7iEe3jvM4HjWegwZY0I516WfZSU3Q9OdYww7+sbYdmCUL/1xJxu7hnlw9xC3PNrNka11gPukjdGCQVEf/p9th0x0Xk70GLIzXy+P7h/hpo37uXfHwOTgG4Dm2gRr2usn37/3lq1c95c93ProAcYyuRnLymJiwVVgxphvlTMhUzgd2GaMeQJARH4IXARsLvjMRcDHvdc/Bb4iIlLYl3CmId/3PtXP6tZa7wQdp70hxUTWIRkXahMxHAPxmEz7/TyZnPssv5i438v3H0jGBTPNNhxjyDkGx7i1Opncwe9nHDeIiokwkXNwHIjHYCzrkMkaknFhNJNjJO2Q8l4PjGdJxmOMZXIcGMlw+uHNpOIxahIx+sYyDE/kSCVi7B9Os28oDRnD7V272dI9Sk1C+OuuIf7lrFUsqUvQN5Ylk3N4aO8wS2oTXP37HWztHpm8E65LxmhvSDIwnuO/7nmas1Yv4czVLbN62npglKZUnOF0jrb6JA2pOOmcQ008RjIuiMzuGtwL4XA6547Iigk5xxCLCXFxnwAiAjERjDGHbDNfLAxQeH3NGTcfkjEhVddAOucgwETWQUQQDj5sXUQYnsi6ZUOEgYksE1k3HwbGczzn8GZ3AIy4+d4zmiGGEIu5tXFjGfezT/WNMzCeJRUXtveMsaN/nNpEjKf63NqfoYksA2NZntFWz77hNP/vvt2T03uk4m7A15iK81TvGKMZh6xjSFjKWTrrcM09T3P26hYSXn+l4zrqEYSs47C0Pum6AmoT09/7NTY2Tu531jE0enfWBkjEhLzm2BzzsBxMzd+Fks45xEXmdKwDDI1naatPMmYOnlue7hvnwKibv4MTWRpr3HUiwqfOewYbdg9y9pFLuPb+3TTWJLjriX5++3gvNYkYxsBxHfXEY0JdIsaJyxuIxYQne8e458l+DmuuYVljCscYltQm6WhM4hioSQjt9e7ymAht9Un3BgxYUpvA4OZVc02crQfGaEjFyDnueakuESNnIC5Qk4iRDytjeOVL8k2gePuRXy/EY27ZjolbnkTcvqXucQc9uRTZnlHiMWEs4+A4hnhMGEnnJsvpSCbHKSuavPOWEEPoHcsQ947jAyMZDO4x1j2SZiLrEI8J3cNp9o9kqE3E2Dkwzu6BCf7++HbWLndrWx/eO0w655Bz4P6nB8g4DmMZ9w/g9q09nLyikRcfuxSAppoEuwvmE93SPcpX7t3F0voEx7TVc8YRzeQcqE/FaPDK/FzK+Gg6x0TOAQONNXEcA6m6hsnnKs/nOBnL5EjFYxhAcB3nKUf5N16ZEdzzZ84Y4iLkjCGTMyRjbp+4saxDMiZuOaxLFm3DMW7aMo77+M1kXEjnDCPpHLWJGBM5hx5vINpY1uGJnjGef/QSGhsbi7YxnnUYHM9Rm4zRO5ph074RahMxtveM8otN3ZN9ZBu8mtq6ZKzo/NU/nuWXm7txDPzskf0ctbSOsUyO01Y1c/iSGgbGs6xqqWVZQ4qhdJbGVJyW2gQ3beomZ9x9WNlSS30yxmjGYVlDkrpknLFMjpa6xOTrumSc+mSM8YwXOyTjpLMOjjE81TdOQyo+ORp8WWOqyBscfEyZH3UnCw74xC1tlwKvBdqNMSeLyPOATmPMj0tM10pgZ8H7XcBzpvuMMSbrPc+3DTiQ/8D+nj6e94+XEq+tJ9u7hxe+5Fyed/5FxMYH+dyDQ+5+AAahLuEKTzvQWiPkcDNpSUqIJRIMjWdoScWIxRMMjKdprk2Aga7hDDnjXkDzQWLOcU+AgntBzJ98jTk4R1DcO0HGBZKJOLmcQ9o7IboHoZCMeQciQipm3CHnDtTGDHWpJGOZLHUJWFJfy9DYBM21CZprEvz84S4ciTGSztGUilGTcGf8X1rnFs6ekQyrl9bTEs8yMG646PhW2s0Q2dE445kcdz3yBMsaEpy1PM73Hhs+pK+Ek82wJGnoG8+wuyfL/5oJbvzLbs7qjHP8iiXs7BuFXIa1Ryxjy65uYvEkq9sa+MRdu0k7bj/A2oR7YAxPZKlPxmhMua/rUgnq4u7JJRFPUBtzyBghZ6AuZjCxBP1jaQYm3GAsfwIVDnoyxpCIQc7kX7snr8LKEsG9iBnvBBMTyDr5k6lb7JJxwXEMDlCXiE3mSW3czeOsgYYE1CYTjGVy1CfgP+/KkfN+M5Mz1MTdQGI047CkJkYyEad/LMOq5hTJuNA3muG4ZQ2c2BqnfyLHM9cu5c5tfTyxr5/ahDDWs5fDmlJsPTA2eVIYHJsAoL0uxk6vlun9N22kpSZBbU2SNU0Oy5Y08UTPKCMTGR7YOcFd2/tIxg+Wy1TcPYk1JYWaZJz+Mbds1CRiDI5nWVKfJIEbWDfVppBcmt2jO8k53klK3KMmH0BgDBnH7QQfF8h6wURc3DwRY4jHY2AM6ZxBYu53BIjFYhjj5afjBhoSExK4vh0ghhvcTeQMCQGJxRhL5ziiJYnEYiRMDoknGM/kqI0bYokkg6NpGmviGGIMjKVprkuRzeXoH8/RXJskk83SO+5Qn4yxJCW8+pRlHBgYpn8sywmr2th3oI/BXJwjltQwPDJKT64GyU7w8y3DrF1WT/fgKE/u2c+X/3KAjd0TLGtwL4JdA+PEc2l27NhBc3MzuVyOtuwIJx7VybGpFoayMRoal3Pn1v20NtYxOpFl4/4x6htqGR8b5RePDFOTjLOiDt5/5nJ6hsfYPTBB+5Jm9vcN8uR+qEslGR0f56+5OGIcHMdhxIljshkS8ThDGQcch1QywfBEliOa4jjxJLlMBiTGRM5gHId4IsHoRAYRt/tLJpN1jyEA45BMJN2BbwKxWJxsNouRGDnHvWFNJeNkszm3DEiMTDZHTVxADpB1HBprU+QyGXIITTUJnFwWE4tTG4PP/P4pGmsSpLM5HAMttQky2RwOQkuNe+w6kqAl4VCTjDORg6Upw5LGerqHRljTKLzwyA5+uWk/P39kH+M5Q3NKSCbi9I1lObI5QUNtDXsHxli/uolHeybY3pfmiOYkO3fuRERIEWdv7yB9fX1kslmGJ3Lc9/QAqRj8yunhuxviJMVwYMzhGa0pMA4DGeHwBiGZiNE7AW0ph6b6WrqGJmhOQFtLI394oo+xrCHjuAFTPCaMph0aUrtIxN1zXXNNnJi4N+yNqQSCG5jW1yQwTo6MIyRiwoHR7GTAnXPwbuwMOeO9Nu45KiGC8Y6Z6Wqz4gLxWAxwj8OYd5NscIP9wm/FvGM8f01LeMFcMh6jIQHjOfdYrYkL4znI5hxqvAqLbM6QiAsY78YBISbGGxXtHsPNtQl++tAeMA6dLb3sHhhjLAutdW7+DWcMDQlhPGcYyxriBfPr9XqtUDHH/X/l6ctpTvfS3+/w3FV1LKuFJ0diPNk7Skd9gv6JHPft6KepJs6j+4YZzRpScTkk4IoB9ak4bbUxauPQXF/LvdsPMJqDhmScwfEMozmoiwvjWYfxHNTE3TSlc4ZkzI0jso6Z9NxRJ6Qdd1lMDEPpg0FeLJavlDgoXmKCcQwfO9mafWWhlE5unwBeAnwBuNZbtgu3ebXUgK8sjMYbWHXxezgwkqG9NsHDOYf779lNbSLG+85ZTdYxHNZcQ1zg6YEJOhqSpOIx9g5N0Fbvvu4fy1CbjFGbiDOczpKIiXuX4t01Ht5Sy9L6BDGRQ2oLMo4hhnuQxLxaJ/fOuPI1IZmc4520IREXL8A5WMCffvppVq9ebf1ua90eMrVLWFrfz8XPPpJHh57i8JYadg9O8NddQzTU1bC0KcaeXUOQrGHASfFk/whDmSS/emo/w+kcMQF5dAdZLx1CH2959mEsb0yxotltpuwdzbKiOcV4xmFoIsdSr4aifyxLS11istm4qSZBPCYMp7PUJeM018RZ3VpHznGfiZmMC45x9zlf+5WvSZCC14m4zOg95xh2Pr2DIzwvMS+gzLubCz2jGRq9mkuAumQcxwuy3Jow92QcjxXXQOZJJZP0jmZYUpdi9erVvGyihy37R/ndtl7vRON+p7OlznuGZJpHe7NAFhjngWSMnDPKRM5Qm4jx5YvW0DvmltvWugR7BicQhKX1CbpHMmRzhraGJCPpHOMZhyV1CcYyDqOZnHsRzhl27OniRScdRX0qTjLmnvCMMaQS7p1tzri/NZF1JoPAnGPImvwNDN6J0B1FlydfI5WPIWNejSocnHYh7tUwCBwyUa57xz+GiDvoKBlzL5Bu7a9QE48xlM6RiAn1yRjD6RyC0FQTZzSTI+e4UzlMZB027xvhy3/eR30yTjwGN23fRY1XYzCaHvDKwvDkBefotgYe3pXm0cEYG7vdALyxJsH+kQz9Ew5tzY0sb1o6uZ/t7e0ArDn6yMllxx92cP1U8rV2xRw27XeCwo4dO6Y9txSSP7agtJqq9Ws6GJjI4jjQ3pBkPOt25m9IxSdrMUWER/eP8O6bt/KMjiYOP9xtkdhjBjCJUVpbWxmeyGLYBUBDTYKOZJwDoxk6GpKsa0nSNZSmpTbFCUtr6B5JkzXCMe1uTVF/2nB0h1u7P5wxfOAFR3HU0jpScWFwPEssJhzYu4fmDve5sXXJOCPpHI4x1KfijKXdY8h91JtbY1+fdFuLDl9SOzkiNRGTyeMiETs4GjXu3WDGvH21XWMcrwYt57UgpeKxydo8Ee/4jIlbu+e1muQDwnzNosH9/tP9bs2V4AasDan4ZC1uYyo+WYvbkHRrt8YzbjCY8lrAjDHUJGLcvPkAe/b3MBxLsWZZ42TN9rNWpahJxNjSPUp7Q5Lmmjj/u2eY5to4TTUJHt47TM9ohngyBWQ56+h2Gr3Bhh87b8lkbeFYxm3ZGhrPMTjhTpc0NJGjZzTD8kb32tM1PEFnYw1Zx7B3aIKzVreQjM/c0y2/fWCyMifh1X7ma0UBUjO0mszEhg0bFvS9uVBKwPcm4JnGmAMi8lVv2ZPA0SWnCnYDhxe8X+Uts31ml4gkgBamPNbNMW7zwLLGJCNph2etbGbt8gZG0znWP6P1kBPNiZ2Nk69PXtHIQqiLHWzmyTcRpab7cAWZrsDm93f58uXTfndJXYKuoTQ1CXfE7tXnPwOA3tEMr/n+RhKxGO31ScYyOcYyzuTdZI/XDHNYc4qVzbWMZXOsf8ZSltYl6R/Pcu6apWUNdBMxoabgfWGVfuHyufqPx4TOzs5D0jjf9LbVu7U8NYUH+pSmwny5mO4i15iK8/Deocm53M5d08ZLj13KJX/XyT99byPDXp+j9voUm/cPA7C0LkHvWJaauLhNSA5cfOxSahIxVrfWsbr14PZXtdROvj6mbW77dVJHitrag804DQWdpVMFZa1wQIkfLPQ4ncqphzXxmlOXT564hyZypHMO9ck4uwcnGPJuPLYeGOVL9+5keVOKgQzc+9QAdckYYxmHpfUJnuh1LwD5Jt2F4mfTeLmZ6dxSSLn2sT4VP6TzfuGxlyj4ic4m90xwZOvB8t9Uk5jskznkTd57dFsdlzxrBSuaakjn3G4P9cnYZHPjfIPT/KwHrckV1NbWzvJpOzUFO1J4jSk83FKzFrmZ0124rcLuDYc0IQOxuHBM28G+coXkz3/g1uDlKTwvFHY9ecWJHYwf0zRnL1mv8mRn/ziX/eyxyQFrU887Im5LQz4IbGuI0ebVwLfWJTliycHfO7qtbvL1mg77fk0lv/3ifZI55EN1KSXgiwPD3ut8bXBjwbJS+AtwrPfYtt3Aa4DXTfnMzcAbgfuAVwF32uYCfMuzV/DMw5por09NZvpip7u7m8MPP9y6bkldgn3D6UODFmBpfZLfXPpMPu01xSRiQt9YhlYvMDn1sEaOWlrH607tdPsJ+XzxLwczefGLxpo4uwYmOKngBkREWFKXJOX1iwG3NqO/8IQ3luVtz1lJZ1MNpx7WOOtd6nwIgpdKExMh5Z3FWwouVoUdwdd01HPyikY6GpJ848+7SXePsP4ZS7n10QOMe30GBA4ZWLPYCGpZWVKb4NUnL2N508FbwMaCic2HJ3J0NtXw+ZetsX4/XmJ8GlQv1WY+XvKB1erWOj513jHsG07z1ft2zbn/rVJawHcb8HkReS9M9un7JHBLqYny+uS9E7gdN7C83hizSUQ+AfzVGHMz7mjg74jINqAXNyg8hJaaGBee0llqciLHTHepdUm3n1lnU411fdJrIqv3+n6NeoNHLji+necf3Wr9TlgoRyfoUmnyLkIrmorrJj//8jVMZB3ef+vj7sAZry/LwHiW15yynHOPazukxq1cBMFLUMjXDjQk3Sa1i9a289CeockuHnXJWKhr6EolqGVFRHjr6SsPWdZUE5+sMR+ecJ+xW8nfV4pZqJfTVjXzwM6BUFYsVJNSAr73Ad8CBoAkbs3eb4BLypAujDG34QaVhcs+VvB6HPjHmbbR0ViNBtXgs3Tp9P2H6hIxdvVnWd1aZ11/6mFNrGypoT4Vo3/c7T912qrm0Ad7MLMXv8g3lx61tNh/vrbp+Ucvob0hOdmnbDid49neyOxKEAQvQaO9IUUi7vYnPXdNG7/e4o4VK7U5N+yEqazkm3Qdb+R/YwXb48LkxU9K8ZKMxSYnolfmxrxsiciFBW/HjDGvBI4AzgCOMca80hgzVM4EloLOw2enu3v6mcjrkjEGxrNFTbp5XnzsUk5Y1jB5ZzWSyU02hYWdmbz4Rb7Pz5HTBNwAH3nRUYfMQQUzT6tSKkHwEjSa4g6rWtxa8IQ3BQkw+RSHxUqYyko85k6FNZZxGC6YTqcShMmLn5TiJRGXRd19YiHMt4bvu0Cz97oHaDbG7Af2lzVVZWKmefgWM83NzdOuq03G6Z8h4MuTDzhGvTnxosBMXvyiscad2PqI1pk7Mk890VUy4AuCl6DR2VLLCq95150b0wv4gt5ru8KEraw01SQYnMgyVOEavrB58YtSvByxpJYLjm8vY2qiz3wDvi6vb91mICEiL8Qy/McYc2c5EqdUhlyu+DmgefKTTtfOUmuXr0of8yacjAIzefGL9oYkbzptxawBXG1iSg1fBe90g+AlaPzDcc0s73CHOSfjscmnYiz2gC9sZeXkFY1c84enWbu8YXJUZyUImxe/KMVLS22CC9fqI+vmw3yvEm8GXgF8DXf2i+s59JFq1+E+Zi0Q6EFmZ2RkZNp1+Zqj2Wr48p8zuH0posBMXvwiFY/x2lNnH2g0NcCrZA1fELwEDcmMTXZryM+7FRMN+MJWVq44YyXbe8fcScYr2KQbNi9+oV78Zb63NJuNMS8GEJFt3nNsA0syqdOw2OjsnD6gqEvMLeCrP2QutmjU8M3kJWhMDfAqGfCFyYtfFDrJ13A/76glvPqUuc1DF1XCVlYSMSGbc0hnnYoNeoLwefEL9eIv8y3hOwpeP1XGdFQEHbRhp6ura9p1tV6txWwBROGggag06c7kJWikvCeoJL3nj1ayH2WYvPhFoZP8/GAdDSnr6OrFRNjKSv6JFdM9j7pchM2LX6gXf5nvVWJURNaJSBw4XVxiU/8qkdCFoHMf2Zmp5nM+Tbp5u1EZtBGmGmERoTYZo7k2MRmkV4owefGLQif5G55ERG58SiFsZcV91rb7CMxKBnxh8+IX6sVf5tuk+x/AAxx8elV2yvr8o4AD0ZFFR+naaWlpmXbdnJt0k3Eaa9xJgqPSpDuTlyBSm4jRUhuH8cr+Tti8+EGhk/wNT1Jn/A9dWck/Jmsi61Q0YA+bF79QL/4yr6oZY8xXcadlWQ2M4T43t/DvKMrzLN2ykM1OjUcVgAMHDky7rnaONXyHL6mZnAg4KjV8M3kJIrUJr4avgv33IHxe/KDQST7Q0xq+cJaVREwYzzgVDdjD6MUP1Iu/zHscujEmC+wSkWcaY3bM+oUqojV8dmau4ZtbH77TD2+hqSbBg7uHItOHL2x3m3XJGC01icnngVaKsHnxg0Nr+LyALyKj1UshjGUlEY8xnnUq+kzWMHrxA/XiL/MK+ETkI8aYq7y3b5iuj1zhI9CqiTGm2kkIJOl0etp1c63hg4Od1aPSpDuTlyDSmEqwtCHJgdHKDk4Kmxc/KHSSPw60STecZSURE8azla3hC6MXP1Av/jLfGr5VBa8PL2dCKoHjONVOQiAZGxubdt1cB23AwZqNqMzDN5OXIPKxFx/FY90j7OyvbCe+sHnxg0In+S4N2qQbzrISj8F4NlfRQRth9OIH6sVf5hXwGWPeXvD2s8A5wFKgF/ijMWZTGdNWMjoCyM5Mcx/lm3Ln0i8sH+hFpUk3bHNCNdcmeOZhTTM+d7cchM2LH9jm4dMavnCWlWQsxlgmV9GAPYxe/EC9+Mu8q2a8qViuBx4GPgxcCHwE+JuI3CABmgtF5+GzM9PcR8l4jGevap5bwJe/0EUk4AvjnFDJeIxljamK/kYYvVSaQieTgzY04AtlWYl7Tbo6D5//qBd/WUhb3NuAFwBnGmNWG2PONMYcAZyJW+N3eRnTVxKxiDQ1lptUauYA4arzjplTB+Z8oFfJGer9ZDYvixX1UkyhE23SPUgYy0oyJqRzlZ2HL4xe/EC9+MtCrtRvAN5ljPlL4ULv/Xu89YFAAz47TU1NZdlOPtCLSg1fubxEDfVSTKGTZCxafVlLIYxlJR6r/CjrMHrxA/XiLwsp4WuBP0yz7g/e+kCg8/DZ6enpKct2Ji90EanhK5eXqKFeiil0kohrk26eMJaVpA/5F0YvfqBe/GUhV+q4MWbItsJbHpirfyIx72kGFwWtra1l2U5iskk3Ghe6cnmJGuqlmEInOvHyQcJYVuJS+fwLoxc/UC/+spCIKCkiLwSmOzoCE2XptCx2xsbGaG5uLnk7MRESMYlMU1a5vEQN9VJMoROZPA404AtjWUn4MOgmjF78QL34y0KCs/3A9bOsDwQa8NkZHy/fvG3JuESmD185vUQJ9VLMVCfJuGiTLuEsK340yYfRix+oF39ZyKPVjqxAOiqCzsNnp5xzH7XVJ2lIReMRdjonlB31UsxUJ8lYdG58SiGMZcWPJ6WE0YsfqBd/iUZb3DToPHx2yjn30fX/uDYyAZ/OCWVHvRQz1UlCa/iAcJaVfL5V8lm6YfTiB+rFXyId8Om0LHZqa2urnYRAol7sqJdipjqpT8apTUTjxqcUwlhWEjEhJpUN+MLoxQ/Ui78EZoBFJdCAz05dXWUfxRVW1Isd9VLMVCeff9mxLKnTLiRhLCvxmFQ02INwevED9eIvkY6IdB4+O319fdVOQiBRL3bUSzFTnWiw5xLGspL0YYR1GL34gXrxl8AFfCKyVER+KyKPe/+tE/WIyP+ISL+I3DrdtnQePjttbW3VTkIgUS921Esx6sROGL34UcMXRi9+oF78JXABH/BB4A5jzLHAHd57G59llse46bQsdoaGrPNmL3rUix31Uow6sRNGL8l45Wv4wujFD9SLvwQx4LsI+Jb3+lvAK2wfMsbcAcxYWjTgs5NOp6udhECiXuyol2LUiZ0weonHpOJPSQmjFz9QL/4SxIBvuTFmr/e6C1i+0A3pPHx2dO4jO+rFjnopRp3YCaOXZKzyU+qE0YsfqBd/qUonNxH5HWDL6Y8UvjHGGBExC/2d/fv3c9lll5FIJMjlclx88cVceeWVdHV10dDQQDweZ3BwkI6ODnp7ezHG0NHRwb59+2hsbARgeHiY5cuX093djYiwdOlSuru7aW5uJpfLMTIyQmdnJ11dXSSTSVpaWjhw4AAtLS2k02nGxsYm16dSKZqamujp6aG1tZWxsTHGx8cn19fW1lJXV0dfXx9tbW0MDQ2RTqcn19fV1ZFKpRgYGKC9vZ2BgQEymczk+rnu0+7du1mzZk2k9qkc+ZTL5YjH45Hap3Lk05YtW+js7IzUPpWaT1u3bmXlypWR2qdy5NP4+PhkusOyT5l0DjEOO3bsqFg+7dixg8bGxsDkU1DKXl9fH8cee2yk9qnUfKokYsyC46mKICJbgBcYY/aKyArgLmPMcdN89gXAB4wxL7Otv/vuu81JJ51UsbSGlf3797Ns2bJqJyNwqBc76qUYdWInjF6+s2Ev9z7Vz7UXn1Cx3wijFz9QL8Vs2LDhwfXr159WiW0HsUn3ZuCN3us3Ar9c6IZEdOZ7G6lUqtpJCCTqxY56KUad2Amjl0RMSFR4ztYwevED9eIvQQz4rgZeIiKPAy/23iMip4nIN/MfEpF7gJ8A60Vkl4icO3VDuVzOpySHi4GBgWonIZCoFzvqpRh1YieMXhI+9OELoxc/UC/+EriJ6owxPcB6y/K/ApcWvD9ntm3pPHx22tvbq52EQKJe7KiXYtSJnTB68SPgC6MXP1Av/hLEGr6yoTV8dvSuyo56saNeilEndsLoJeHDtCxh9OIH6sVfIh3wBW1ASlDIZDLVTkIgUS921Esx6sROGL0k4rGK1/CF0YsfqBd/iXTAp/Pw2dG5j+yoFzvqpRh1YieMXhIxdB6+KqFe/CXSAZ/ePdip9Fw/YUW92FEvxagTO2H0Up+MU5+KV/Q3wujFD9SLv0R6VEM8XtmDOKw0NDRUOwmBRL3YUS/FqBM7YfRyxhEtnLaquaK/EUYvfqBe/CXSAZ9iRwNhO+rFjnopRp3YCaOXeEyIV7hJN4xe/EC9+Eukm3R1lK6dwcHBaichkKgXO+qlGHViR73YUS921Iu/RDrg00Ebdjo6OqqdhECiXuyol2LUiR31Yke92FEv/hLpgC+bzVY7CYGkt7e32kkIJOrFjnopRp3YUS921Isd9eIvkQ74FDs6P6Ed9WJHvRSjTuyoFzvqxY568ZdIB3z6aDU7Wo1uR73YUS/FqBM76sWOerGjXvwl0gGfzsNnZ9++fdVOQiBRL3bUSzHqxI56saNe7KgXf4l0wKdDvu00NjZWOwmBRL3YUS/FqBM76sWOerGjXvwl0gGfoiiKoiiKEvGAT+fhszM8PFztJAQS9WJHvRSjTuyoFzvqxY568ZdIB3w6D5+d5cuXVzsJgUS92FEvxagTO+rFjnqxo178JdIBn87DZ6e7u7vaSQgk6sWOeilGndhRL3bUix314i+RDvgUOyKVfW5kWFEvdtRLMerEjnqxo17sqBd/iXTAp/Pw2Vm6dGm1kxBI1Isd9VKMOrGjXuyoFzvqxV8iHfDpPHx2tBrdjnqxo16KUSd21Isd9WJHvfhLpAM+nYfPTnNzc7WTEEjUix31Uow6saNe7KgXO+rFXyId8Cl2dLoaO+rFjnopRp3YUS921Isd9eIvkQ74tDDZGRkZqXYSAol6saNeilEndtSLHfViR734S6QDPp2Hz05nZ2e1kxBI1Isd9VKMOrGjXuyoFzvqxV8iHfDpoA07XV1d1U5CIFEvdtRLMerEjnqxo17sqBd/iXTA19/fX+0kBJKbbrqp2kkIJOrFjnopRp3YUS921Isd9VJMb29ve6W2rQHfIuTnP/95tZMQSNSLHfVSjDqxo17sqBc76qWYwcHBjkptO9IBnzGm2kkIJPrIOTvqxY56KUad2FEvdtSLHfXiLxLloOi2224bqqmp2VLtdASN3t7e9qVLlx6odjqChnqxo16KUSd21Isd9WJHvRQzMTFx3AUXXNBUiW1HOuBTFEVRFEVRIt6kqyiKoiiKomjApyiKoiiKEnkCH/CJyOEi8nsR2Swim0Tk3d7yz4rIYyLysIj8QkSWeMtTInKDiDwiIn8TkRcUbOu13vKHReR/RKTdW/5xEdktIg95fxdUYVfnRZm9vNr7/CYR+UzB8hoR+ZGIbBORP4vIkf7u5fzxycubRKS7oLxc6vNuzpsZvHzS28eHROQ3InKYt1xE5Ete3j8sIs8q2NYbReRx7++NBcv/zvO4zfuu+L+nc8cnJ3eJyJaCsrLM/z2dH2X28j8i0i8it075jaO8c8o27xyT8ncv549PXm4UkScLysupvu7kAiiXFxE5VUTu87bxsIi8uuA3QlVefHIy/7JijAn0H7ACeJb3ugnYCqwFXgokvOWfAT7jvb4SuMF7vQx4EDewTQD7gXZv3X8CH/defxz4QLX3tUpe2oCngQ5v3beA9d7rdwDXeq9fA/yo2vsdEC9vAr5S7X0tk5fmgs+8qyC/LwB+DQhwBvBnb/lS4Anvf6v3utVb94D3WfG+e3619zsATu4CTqv2vlbDi7duPfBy4NYpv/Fj4DXe62uBt1d7vwPi5UbgVdXe12p4AdYAx3qvDwP2AkvCWF58cjLvshL4Gj5jzF5jzAbv9RDwKLDSGPMbY0x+TPf9wCrv9VrgTu/z+4F+4DRckQI0iIgAzcAev/aj3JTRy9HA48aYbu9zvwP+wXt9EW6gA/BTYL3nLrD45CV0zOBlsOBjDUB+FNdFwLeNy/3AEhFZAZwL/NYY02uM6QN+C5znrWs2xtxv3LPRt4FX+LJzC6TSTnzbkTJTRi8YY+4Ahgq3751DXoR7TgH3HPOKCu1O2ai0l7BSLi/GmK3GmMe97ezBraDpCGN5qbSThaYr8AFfIeI2KT4T+POUVW/BjY4B/gZcKCIJETkK+DvgcGNMBng78AhuoLcWuK5gG+/0qkyvF5HWCu5G2SnFC7ANOE5EjhSRBO6BdLj3nZXATgAvWBrArfkKBRX0AvAPXnn5qYgULg88U72IyFUishN4PfAx72OTee+xy1s20/JdluWhoEJO8tzgNbn8e9BvmKZSopfpaAP6C27AQlVWoGJe8lzlnVv+S0RqypfqylMuLyJyOpACthPy8lIhJ3nmVVZCE/CJSCPwM+A9hVGyiHwEyALf8xZdjyvrr8AXgD8BORFJ4gZ8z8StGn0Y+JD3na8CxwCn4laZXlPZvSkfpXrxaiTeDvwIuAd4Csj5lPyKUWEvtwBHGmNOxq3NydeCBh6bF2PMR4wxh+M6eWc101cNKuzk9caYk4BzvL83lJpev9CyYqfCXj4EHA88G7eLwL+VmFzfKJcXrxb0O8CbjTFOpdLrBxV2Mu+yEoqAzwvWfgZ8zxjz84LlbwJehntSNeDWRBlj3muMOdUYcxGwBLf9/FRv/Xbvsz8GzvKW7TPG5DyR3wBO92vfSqFMXjDG3GKMeY4x5kxgS345sBuvVsur5WoBevzYt1KotBdjTI8xZsLb7DdxawUDz3ReCvgeB5utJ/PeY5W3bKblqyzLA02FnWCMyf8fAr5PyM8tBczFy3T04DZZJeb4+cBQYS/5pkDjnV9uYJGVFxFpBn4FfMRr2oSQlpcKO1lQWQl8wOc1gVwHPGqM+XzB8vOAfwUuNMaMFiyvF5EG7/VLgKwxZjOuvLUikm//fgluu3o+es7zSmBjBXepLJTRC+KNHPSast+BG8QA3AzkRxy+CrgzHygFFT+8TCkvF+KVoyAzg5djCz52EfCY9/pm4BJxOQMYMMbsBW4HXioirZ6XlwK3e+sGReQM77cuAX5Z+T1bOJV24nUTyM8EkMS92QjzuWW+Xqx455Df455TwD3HBLqsQOW9eNtaUfBbr2ARlRdxR97+ArcvW76/XijLS6WdeNuaf1kxARjRMtMf8Fzcjo0PAw95fxfg9rHaWbAsP9rlSNzamEdxO9qvLtjWFd7yh3Gb5dq85d/B7dv3sCd+RbX322cvPwA2e3+vKVheC/zE2+YDwNHV3u+AePk0sAm3/9/vgeOrvd8lePkZ7okif0ys9D4vwH/j9hd5hIKRprh9ILd5f28uWH6at63twFfAfZJPUP8q7QS3U/aD3nY2AV8E4tXeb5+93AN0A2O4XSfO9ZYf7Z1TtuGeY2qqvd8B8XKn99mNwHeBxmrvt19egH8GMgXbeAg4NYzlxScn8y4r+mg1RVEURVGUiBP4Jl1FURRFURSlNDTgUxRFURRFiTga8CmKoiiKokQcDfgURVEURVEijgZ8iqIoiqIoEUcDPkVRFEVRlIijAZ+iKIqiKErE0YBPURQlAohIrYhcLiKvqXZaFEUJHhrwKYqy6BGRp0TkxWH4bRH5tIi8x7JqPXA30Ok9yg0ReUBETixPShVFCTMa8CmKovhEqYGl9yzwS4CvWVb/HngxsN8Yk/GWfQ74xEJ/T1GU6KABn6IoSnh4E3CbMWbMsi4DPNcY8/2CZTcDLxSRTj8SpyhKcNGAT1GUqiMibxaRWwrePy4iPyl4v1NEThWRD4rIdhEZEpHNIvLKgs/8m4j8dMp2vygiX/JeHyYiPxORbhF5UkTeNU1aZvycV0v3ARF5WEQGRORHIlLrrXuWiPyvl76feOv+P2/dd4AjgFtEZFhE/rVgs6fatmfhfOAP06x7B3ChiMTzC4wx48CDwLnTfEdRlEWCBnyKogSBPwDniEhMRA4DUsCZACJyNNAIPAxsB84BWoD/AL4rIiu8bfwQuEBEmrzvxYF/Ar4vIjHgFuBvwErc/m7vEZFDAqG5fs7b7nnAUcDJwJtEJAX8ArgRWAr8AJgMSI0xbwCeBl5ujGk0xvznTNubxtNJwJapC0WkHegAksDRU1Y/CpwyzfYURVkkaMCnKErVMcY8AQwBpwLPA24H9ojI8cDzgXuMMY4x5ifGmD3e6x8BjwOne9vYAWzgYJD1ImDUGHM/8GygwxjzCWNM2vu9bwBTR7TO9XNf8tLRixsgngqcASS8dRljzM+BB+aowLY9G0s8T1P5V+CLwJPA2inrhrzvKYqyiElUOwGKoigefwBeADzDe92PG+yd6b1HRC4B3gcc6X2nEWgv2Mb3gdcC3wZe570HWA0cJiL9BZ+NA/dMScNcP9dV8HoUOMz7222MMQXrdlr3tBjb9mz0AU2FC0TkJGDYGNMtIltwA75fFnykCdeloiiLGK3hUxQlKOQDvnO813/ADfieD/xBRFbj1ra9E2gzxiwBNgJSsI2fAC8QkVW4NX35gG8n8KQxZknBX5Mx5oIpaZjr52zsBVaKSGF6Dp/yGUNpPAysmbLs34FREbkCtyl8ag3fCbhN1IqiLGI04FMUJSj8AXghUGeM2YVbq3Ye0Ab8L9CAGzB1gzvQA1hXuAFjTDdwF3ADbuD2qLfqAWDIG9hRJyJxEVknIs+ekoa5fs7GfUAOeKeIJETkIrzm5gL2UdzHbj7chhsAAyAirwJuMsZ8zhhzLfAd4MSC9bXA3wG/LeE3FUWJABrwKYoSCIwxW4FhvOZTY8wg8ARwrzEmZ4zZDFyDG1jtwx3AcK9lU9/HnY9ucnoSY0wOeBlu37gngQPAN3EHfzDfz02T/jRwMfBW3CbUfwZuBSYKPvZp4KMi0i8iH5htmxa+jTswpc4LQj8D/BUmg7sjgJNE5Ezv8y8H7jLG7FnAbymKEiHk0O4miqIoSrkQkT8D1xpjbijjNj+FO7nyF+b4+281xmws1+8rihJONOBTFEUpEyLyfNxpUw4ArweuBY42xuytasIURVn06ChdRVGU8nEc8GPc/oZPAK/SYE9RlCCgNXyKoiiKoigRRwdtKIqiKIqiRBwN+BRFURRFUSKOBnyKoiiKoigRRwM+RVEURVGUiKMBn6IoiqIoSsTRgE9RFEVRFCXiaMCnKIqiKIoScTTgUxRFURRFiTj/P2Ol4u3MVskrAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 720x432 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure(figsize=(10,6))\n",
"ax=fig.add_subplot(211)\n",
"plt.plot(1.e8/nus,xsv,\".\",lw=1,label=\"64\",markersize=1)\n",
"plt.plot(1.e8/nus,xsv_32,\".\",lw=1,label=\"32\",markersize=1)\n",
"plt.xlim(22985.,23025)\n",
"plt.yscale(\"log\")\n",
"plt.ylabel(\"xsv $cm^{2}$\")\n",
"ax=fig.add_subplot(212)\n",
"plt.plot(1.e8/nus,(xsv_32-xsv)/xsv,lw=1,label=\"difference\")\n",
"plt.xlabel(\"wavelength ($\\AA$)\")\n",
"plt.ylabel(\"Difference\")\n",
"plt.xlim(22985.,23025)\n",
"plt.legend(loc=\"upper left\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We found ~ 10 % error when using float32 as an wavenumber and line center"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.8 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"vscode": {
"interpreter": {
"hash": "72bc7f8b1808a6f5ada3c6a20601509b8b1843160436d276d47f2ba819b3753b"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}