src/plot/PiePlot3D.php
<?php
/**
* JPGraph v4.0.3
*/
namespace Amenadiel\JpGraph\Plot;
use Amenadiel\JpGraph\Text;
use Amenadiel\JpGraph\Util;
/**
* File: JPGRAPH_PIE3D.PHP
* // Description: 3D Pie plot extension for JpGraph
* // Created: 2001-03-24
* // Ver: $Id: jpgraph_pie3d.php 1329 2009-06-20 19:23:30Z ljp $
* //
* // Copyright (c) Asial Corporation. All rights reserved.
*/
/**
* @class PiePlot3D
* // Description: Plots a 3D pie with a specified projection
* // angle between 20 and 70 degrees.
*/
class PiePlot3D extends PiePlot
{
private $labelhintcolor = 'red';
private $showlabelhint = true;
private $angle = 50;
private $edgecolor = '';
private $edgeweight = 1;
private $iThickness = false;
/**
* CONSTRUCTOR.
*
* @param mixed $data
*/
public function __construct($data)
{
$this->radius = 0.5;
$this->data = $data;
$this->title = new Text\Text('');
$this->title->SetFont(FF_FONT1, FS_BOLD);
$this->value = new DisplayValue();
$this->value->Show();
$this->value->SetFormat('%.0f%%');
}
/**
* PUBLIC METHODS.
*
* @param mixed $aLegend
*/
// Set label arrays
public function SetLegends($aLegend)
{
$this->legends = array_reverse(array_slice($aLegend, 0, safe_count($this->data)));
}
public function SetSliceColors($aColors)
{
$this->setslicecolors = $aColors;
}
public function Legend($aGraph)
{
parent::Legend($aGraph);
$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
}
public function SetCSIMTargets($aTargets, $aAlts = '', $aWinTargets = '')
{
$this->csimtargets = $aTargets;
$this->csimwintargets = $aWinTargets;
$this->csimalts = $aAlts;
}
// Should the slices be separated by a line? If color is specified as "" no line
// will be used to separate pie slices.
public function SetEdge($aColor = 'black', $aWeight = 1)
{
$this->edgecolor = $aColor;
$this->edgeweight = $aWeight;
}
// Specify projection angle for 3D in degrees
// Must be between 20 and 70 degrees
public function SetAngle($a)
{
if ($a < 5 || $a > 90) {
Util\JpGraphError::RaiseL(14002);
//("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
} else {
$this->angle = $a;
}
}
public function Add3DSliceToCSIM($i, $xc, $yc, $height, $width, $thick, $sa, $ea)
{
//Slice number, ellipse centre (x,y), height, width, start angle, end angle
$sa *= M_PI / 180;
$ea *= M_PI / 180;
//add coordinates of the centre to the map
$coords = "${xc}, ${yc}";
//add coordinates of the first point on the arc to the map
$xp = floor($width * cos($sa) / 2 + $xc);
$yp = floor($yc - $height * sin($sa) / 2);
$coords .= ", ${xp}, ${yp}";
//If on the front half, add the thickness offset
if ($sa >= M_PI && $sa <= 2 * M_PI * 1.01) {
$yp = floor($yp + $thick);
$coords .= ", ${xp}, ${yp}";
}
//add coordinates every 0.2 radians
$a = $sa + 0.2;
while ($a < $ea) {
$xp = floor($width * cos($a) / 2 + $xc);
if ($a >= M_PI && $a <= 2 * M_PI * 1.01) {
$yp = floor($yc - ($height * sin($a) / 2) + $thick);
} else {
$yp = floor($yc - $height * sin($a) / 2);
}
$coords .= ", ${xp}, ${yp}";
$a += 0.2;
}
//Add the last point on the arc
$xp = floor($width * cos($ea) / 2 + $xc);
$yp = floor($yc - $height * sin($ea) / 2);
if ($ea >= M_PI && $ea <= 2 * M_PI * 1.01) {
$coords .= ", ${xp}, " . floor($yp + $thick);
}
$coords .= ", ${xp}, ${yp}";
$alt = '';
if (!empty($this->csimtargets[$i])) {
$this->csimareas .= "<area shape=\"poly\" coords=\"${coords}\" href=\"" . $this->csimtargets[$i] . '"';
if (!empty($this->csimwintargets[$i])) {
$this->csimareas .= ' target="' . $this->csimwintargets[$i] . '" ';
}
if (!empty($this->csimalts[$i])) {
$tmp = sprintf($this->csimalts[$i], $this->data[$i]);
$this->csimareas .= "alt=\"${tmp}\" title=\"${tmp}\" ";
}
$this->csimareas .= " />\n";
}
}
public function SetLabels($aLabels, $aLblPosAdj = 'auto')
{
$this->labels = $aLabels;
$this->ilabelposadj = $aLblPosAdj;
}
// Distance from the pie to the labels
public function SetLabelMargin($m)
{
$this->value->SetMargin($m);
}
// Show a thin line from the pie to the label for a specific slice
public function ShowLabelHint($f = true)
{
$this->showlabelhint = $f;
}
// Set color of hint line to label for each slice
public function SetLabelHintColor($c)
{
$this->labelhintcolor = $c;
}
public function SetHeight($aHeight)
{
$this->iThickness = $aHeight;
}
// Normalize Angle between 0-360
public function NormAngle($a)
{
// Normalize anle to 0 to 2M_PI
//
if ($a > 0) {
while ($a > 360) {
$a -= 360;
}
} else {
while ($a < 0) {
$a += 360;
}
}
if ($a < 0) {
$a = 360 + $a;
}
if ($a == 360) {
$a = 0;
}
return $a;
}
// Draw one 3D pie slice at position ($xc,$yc) with height $z
public function Pie3DSlice($img, $xc, $yc, $w, $h, $sa, $ea, $z, $fillcolor, $shadow = 0.65)
{
// Due to the way the 3D Pie algorithm works we are
// guaranteed that any slice we get into this method
// belongs to either the left or right side of the
// pie ellipse. Hence, no slice will cross 90 or 270
// point.
if (($sa < 90 && $ea > 90) || (($sa > 90 && $sa < 270) && $ea > 270)) {
Util\JpGraphError::RaiseL(14003); //('Internal assertion failed. Pie3D::Pie3DSlice');
exit(1);
}
$p[] = [];
// Setup pre-calculated values
$rsa = $sa / 180 * M_PI; // to Rad
$rea = $ea / 180 * M_PI; // to Rad
$sinsa = sin($rsa);
$cossa = cos($rsa);
$sinea = sin($rea);
$cosea = cos($rea);
// p[] is the points for the overall slice and
// pt[] is the points for the top pie
// Angular step when approximating the arc with a polygon train.
$step = 0.05;
if ($sa >= 270) {
if ($ea > 360 || ($ea > 0 && $ea <= 90)) {
if ($ea > 0 && $ea <= 90) {
// Adjust angle to simplify conditions in loops
$rea += 2 * M_PI;
}
$p = [$xc, $yc, $xc, $yc + $z,
$xc + $w * $cossa, $z + $yc - $h * $sinsa, ];
$pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa];
for ($a = $rsa; $a < 2 * M_PI; $a += $step) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc + $w * $tca;
$p[] = $z + $yc - $h * $tsa;
$pt[] = $xc + $w * $tca;
$pt[] = $yc - $h * $tsa;
}
$pt[] = $xc + $w;
$pt[] = $yc;
$p[] = $xc + $w;
$p[] = $z + $yc;
$p[] = $xc + $w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
for ($a = 2 * M_PI + $step; $a < $rea; $a += $step) {
$pt[] = $xc + $w * cos($a);
$pt[] = $yc - $h * sin($a);
}
$pt[] = $xc + $w * $cosea;
$pt[] = $yc - $h * $sinea;
$pt[] = $xc;
$pt[] = $yc;
} else {
$p = [$xc, $yc, $xc, $yc + $z,
$xc + $w * $cossa, $z + $yc - $h * $sinsa, ];
$pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa];
$rea = $rea == 0.0 ? 2 * M_PI : $rea;
for ($a = $rsa; $a < $rea; $a += $step) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc + $w * $tca;
$p[] = $z + $yc - $h * $tsa;
$pt[] = $xc + $w * $tca;
$pt[] = $yc - $h * $tsa;
}
$pt[] = $xc + $w * $cosea;
$pt[] = $yc - $h * $sinea;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc + $w * $cosea;
$p[] = $z + $yc - $h * $sinea;
$p[] = $xc + $w * $cosea;
$p[] = $yc - $h * $sinea;
$p[] = $xc;
$p[] = $yc;
}
} elseif ($sa >= 180) {
$p = [$xc, $yc, $xc, $yc + $z, $xc + $w * $cosea, $z + $yc - $h * $sinea];
$pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea];
for ($a = $rea; $a > $rsa; $a -= $step) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc + $w * $tca;
$p[] = $z + $yc - $h * $tsa;
$pt[] = $xc + $w * $tca;
$pt[] = $yc - $h * $tsa;
}
$pt[] = $xc + $w * $cossa;
$pt[] = $yc - $h * $sinsa;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc + $w * $cossa;
$p[] = $z + $yc - $h * $sinsa;
$p[] = $xc + $w * $cossa;
$p[] = $yc - $h * $sinsa;
$p[] = $xc;
$p[] = $yc;
} elseif ($sa >= 90) {
if ($ea > 180) {
$p = [$xc, $yc, $xc, $yc + $z, $xc + $w * $cosea, $z + $yc - $h * $sinea];
$pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea];
for ($a = $rea; $a > M_PI; $a -= $step) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc + $w * $tca;
$p[] = $z + $yc - $h * $tsa;
$pt[] = $xc + $w * $tca;
$pt[] = $yc - $h * $tsa;
}
$p[] = $xc - $w;
$p[] = $z + $yc;
$p[] = $xc - $w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
$pt[] = $xc - $w;
$pt[] = $z + $yc;
$pt[] = $xc - $w;
$pt[] = $yc;
for ($a = M_PI - $step; $a > $rsa; $a -= $step) {
$pt[] = $xc + $w * cos($a);
$pt[] = $yc - $h * sin($a);
}
$pt[] = $xc + $w * $cossa;
$pt[] = $yc - $h * $sinsa;
$pt[] = $xc;
$pt[] = $yc;
} else {
// $sa >= 90 && $ea <= 180
$p = [$xc, $yc, $xc, $yc + $z,
$xc + $w * $cosea, $z + $yc - $h * $sinea,
$xc + $w * $cosea, $yc - $h * $sinea,
$xc, $yc, ];
$pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea];
for ($a = $rea; $a > $rsa; $a -= $step) {
$pt[] = $xc + $w * cos($a);
$pt[] = $yc - $h * sin($a);
}
$pt[] = $xc + $w * $cossa;
$pt[] = $yc - $h * $sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
} else {
// sa > 0 && ea < 90
$p = [$xc, $yc, $xc, $yc + $z,
$xc + $w * $cossa, $z + $yc - $h * $sinsa,
$xc + $w * $cossa, $yc - $h * $sinsa,
$xc, $yc, ];
$pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa];
for ($a = $rsa; $a < $rea; $a += $step) {
$pt[] = $xc + $w * cos($a);
$pt[] = $yc - $h * sin($a);
}
$pt[] = $xc + $w * $cosea;
$pt[] = $yc - $h * $sinea;
$pt[] = $xc;
$pt[] = $yc;
}
$img->PushColor($fillcolor . ':' . $shadow);
$img->FilledPolygon($p);
$img->PopColor();
$img->PushColor($fillcolor);
$img->FilledPolygon($pt);
$img->PopColor();
}
public function SetStartAngle($aStart)
{
if ($aStart < 0 || $aStart > 360) {
Util\JpGraphError::RaiseL(14004); //('Slice start angle must be between 0 and 360 degrees.');
}
$this->startangle = $aStart;
}
// Draw a 3D Pie
public function Pie3D(
$aaoption,
$img,
$data,
$colors,
$xc,
$yc,
$d,
$angle,
$z,
$shadow = 0.65,
$startangle = 0,
$edgecolor = '',
$edgeweight = 1
) {
/**
* As usual the algorithm get more complicated than I originally
* // envisioned. I believe that this is as simple as it is possible
* // to do it with the features I want. It's a good exercise to start
* // thinking on how to do this to convince your self that all this
* // is really needed for the general case.
* //
* // The algorithm two draw 3D pies without "real 3D" is done in
* // two steps.
* // First imagine the pie cut in half through a thought line between
* // 12'a clock and 6'a clock. It now easy to imagine that we can plot
* // the individual slices for each half by starting with the topmost
* // pie slice and continue down to 6'a clock.
* //
* // In the algortithm this is done in three principal steps
* // Step 1. Do the knife cut to ensure by splitting slices that extends
* // over the cut line. This is done by splitting the original slices into
* // upto 3 subslices.
* // Step 2. Find the top slice for each half
* // Step 3. Draw the slices from top to bottom
* //
* // The thing that slightly complicates this scheme with all the
* // angle comparisons below is that we can have an arbitrary start
* // angle so we must take into account the different equivalence classes.
* // For the same reason we must walk through the angle array in a
* // modulo fashion.
* //
* // Limitations of algorithm:
* // * A small exploded slice which crosses the 270 degree point
* // will get slightly nagged close to the center due to the fact that
* // we print the slices in Z-order and that the slice left part
* // get printed first and might get slightly nagged by a larger
* // slice on the right side just before the right part of the small
* // slice. Not a major problem though.
*/
// Determine the height of the ellippse which gives an
// indication of the inclination angle
$h = ($angle / 90.0) * $d;
$sum = 0;
for ($i = 0; $i < safe_count($data); ++$i) {
$sum += $data[$i];
}
// Special optimization
if ($sum == 0) {
return;
}
if ($this->labeltype == 2) {
$this->adjusted_data = $this->AdjPercentage($data);
}
// Setup the start
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
//
// Step 1 . Split all slices that crosses 90 or 270
//
$idx = 0;
$adjexplode = [];
$numcolors = safe_count($colors);
for ($i = 0; $i < safe_count($data); ++$i, ++$idx) {
$da = $data[$i] / $sum * 360;
if (empty($this->explode_radius[$i])) {
$this->explode_radius[$i] = 0;
}
$expscale = 1;
if ($aaoption == 1) {
$expscale = 2;
}
$la = $a + $da / 2;
$explode = [$xc + $this->explode_radius[$i] * cos($la * M_PI / 180) * $expscale,
$yc - $this->explode_radius[$i] * sin($la * M_PI / 180) * ($h / $d) * $expscale, ];
$adjexplode[$idx] = $explode;
$labeldata[$i] = [$la, $explode[0], $explode[1]];
$originalangles[$i] = [$a, $a + $da];
$ne = $this->NormAngle($a + $da);
if ($da <= 180) {
// If the slice size is <= 90 it can at maximum cut across
// one boundary (either 90 or 270) where it needs to be split
$split = -1; // no split
if (($da <= 90 && ($a <= 90 && $ne > 90)) ||
(($da <= 180 && $da > 90) && (($a < 90 || $a >= 270) && $ne > 90))) {
$split = 90;
} elseif (($da <= 90 && ($a <= 270 && $ne > 270)) ||
(($da <= 180 && $da > 90) && ($a >= 90 && $a < 270 && ($a + $da) > 270))) {
$split = 270;
}
if ($split > 0) {
// split in two
$angles[$idx] = [$a, $split];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = [$split, $ne];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
} else {
// no split
$angles[$idx] = [$a, $ne];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
} else {
// da>180
// Slice may, depending on position, cross one or two
// bonudaries
if ($a < 90) {
$split = 90;
} elseif ($a <= 270) {
$split = 270;
} else {
$split = 90;
}
$angles[$idx] = [$a, $split];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
//if( $a+$da > 360-$split ) {
// For slices larger than 270 degrees we might cross
// another boundary as well. This means that we must
// split the slice further. The comparison gets a little
// bit complicated since we must take into accound that
// a pie might have a startangle >0 and hence a slice might
// wrap around the 0 angle.
// Three cases:
// a) Slice starts before 90 and hence gets a split=90, but
// we must also check if we need to split at 270
// b) Slice starts after 90 but before 270 and slices
// crosses 90 (after a wrap around of 0)
// c) If start is > 270 (hence the firstr split is at 90)
// and the slice is so large that it goes all the way
// around 270.
if (($a < 90 && ($a + $da > 270)) || ($a > 90 && $a <= 270 && ($a + $da > 360 + 90)) || ($a > 270 && $this->NormAngle($a + $da) > 270)) {
$angles[++$idx] = [$split, 360 - $split];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
$angles[++$idx] = [360 - $split, $ne];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
} else {
// Just a simple split to the previous decided
// angle.
$angles[++$idx] = [$split, $ne];
$adjcolors[$idx] = $colors[$i % $numcolors];
$adjexplode[$idx] = $explode;
}
}
$a += $da;
$a = $this->NormAngle($a);
}
// Total number of slices
$n = safe_count($angles);
for ($i = 0; $i < $n; ++$i) {
list($dbgs, $dbge) = $angles[$i];
}
//
// Step 2. Find start index (first pie that starts in upper left quadrant)
//
$minval = $angles[0][0];
$min = 0;
for ($i = 0; $i < $n; ++$i) {
if ($angles[$i][0] < $minval) {
$minval = $angles[$i][0];
$min = $i;
}
}
$j = $min;
$cnt = 0;
while ($angles[$j][1] <= 90) {
++$j;
if ($j >= $n) {
$j = 0;
}
if ($cnt > $n) {
Util\JpGraphError::RaiseL(14005);
//("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
}
++$cnt;
}
$start = $j;
//
// Step 3. Print slices in z-order
//
$cnt = 0;
// First stroke all the slices between 90 and 270 (left half circle)
// counterclockwise
while ($angles[$j][0] < 270 && $aaoption !== 2) {
list($x, $y) = $adjexplode[$j];
$this->Pie3DSlice(
$img,
$x,
$y,
$d,
$h,
$angles[$j][0],
$angles[$j][1],
$z,
$adjcolors[$j],
$shadow
);
$last = [$x, $y, $j];
++$j;
if ($j >= $n) {
$j = 0;
}
if ($cnt > $n) {
Util\JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
++$cnt;
}
$slice_left = $n - $cnt;
$j = $start - 1;
if ($j < 0) {
$j = $n - 1;
}
$cnt = 0;
// The stroke all slices from 90 to -90 (right half circle)
// clockwise
while ($cnt < $slice_left && $aaoption !== 2) {
list($x, $y) = $adjexplode[$j];
$this->Pie3DSlice(
$img,
$x,
$y,
$d,
$h,
$angles[$j][0],
$angles[$j][1],
$z,
$adjcolors[$j],
$shadow
);
--$j;
if ($cnt > $n) {
Util\JpGraphError::RaiseL(14006);
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
}
if ($j < 0) {
$j = $n - 1;
}
++$cnt;
}
// Now do a special thing. Stroke the last slice on the left
// halfcircle one more time. This is needed in the case where
// the slice close to 270 have been exploded. In that case the
// part of the slice close to the center of the pie might be
// slightly nagged.
if ($aaoption !== 2) {
$this->Pie3DSlice(
$img,
$last[0],
$last[1],
$d,
$h,
$angles[$last[2]][0],
$angles[$last[2]][1],
$z,
$adjcolors[$last[2]],
$shadow
);
}
if ($aaoption !== 1) {
// Now print possible labels and add csim
$this->value->ApplyFont($img);
$margin = $img->GetFontHeight() / 2 + $this->value->margin;
for ($i = 0; $i < safe_count($data); ++$i) {
$la = $labeldata[$i][0];
$x = $labeldata[$i][1] + cos($la * M_PI / 180) * ($d + $margin) * $this->ilabelposadj;
$y = $labeldata[$i][2] - sin($la * M_PI / 180) * ($h + $margin) * $this->ilabelposadj;
if ($this->ilabelposadj >= 1.0) {
if ($la > 180 && $la < 360) {
$y += $z;
}
}
if ($this->labeltype == 0) {
if ($sum > 0) {
$l = 100 * $data[$i] / $sum;
} else {
$l = 0;
}
} elseif ($this->labeltype == 1) {
$l = $data[$i];
} else {
$l = $this->adjusted_data[$i];
}
if (isset($this->labels[$i]) && is_string($this->labels[$i])) {
$l = sprintf($this->labels[$i], $l);
}
$this->StrokeLabels($l, $img, $labeldata[$i][0] * M_PI / 180, $x, $y, $z);
$this->Add3DSliceToCSIM(
$i,
$labeldata[$i][1],
$labeldata[$i][2],
$h * 2,
$d * 2,
$z,
$originalangles[$i][0],
$originalangles[$i][1]
);
}
}
//
// Finally add potential lines in pie
//
if ($edgecolor == '' || $aaoption !== 0) {
return;
}
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
$a *= M_PI / 180.0;
$idx = 0;
$img->PushColor($edgecolor);
$img->SetLineWeight($edgeweight);
$fulledge = true;
for ($i = 0; $i < safe_count($data) && $fulledge; ++$i) {
if (empty($this->explode_radius[$i])) {
$this->explode_radius[$i] = 0;
}
if ($this->explode_radius[$i] > 0) {
$fulledge = false;
}
}
for ($i = 0; $i < safe_count($data); ++$i, ++$idx) {
$da = $data[$i] / $sum * 2 * M_PI;
$this->StrokeFullSliceFrame(
$img,
$xc,
$yc,
$a,
$a + $da,
$d,
$h,
$z,
$edgecolor,
$this->explode_radius[$i],
$fulledge
);
$a += $da;
}
$img->PopColor();
}
public function StrokeFullSliceFrame($img, $xc, $yc, $sa, $ea, $w, $h, $z, $edgecolor, $exploderadius, $fulledge)
{
$step = 0.02;
if ($exploderadius > 0) {
$la = ($sa + $ea) / 2;
$xc += $exploderadius * cos($la);
$yc -= $exploderadius * sin($la) * ($h / $w);
}
$p = [$xc, $yc, $xc + $w * cos($sa), $yc - $h * sin($sa)];
for ($a = $sa; $a < $ea; $a += $step) {
$p[] = $xc + $w * cos($a);
$p[] = $yc - $h * sin($a);
}
$p[] = $xc + $w * cos($ea);
$p[] = $yc - $h * sin($ea);
$p[] = $xc;
$p[] = $yc;
$img->SetColor($edgecolor);
$img->Polygon($p);
// Unfortunately we can't really draw the full edge around the whole of
// of the slice if any of the slices are exploded. The reason is that
// this algorithm is to simply. There are cases where the edges will
// "overwrite" other slices when they have been exploded.
// Doing the full, proper 3D hidden lines stiff is actually quite
// tricky. So for exploded pies we only draw the top edge. Not perfect
// but the "real" solution is much more complicated.
if ($fulledge && !($sa > 0 && $sa < M_PI && $ea < M_PI)) {
if ($sa < M_PI && $ea > M_PI) {
$sa = M_PI;
}
if ($sa < 2 * M_PI && (($ea >= 2 * M_PI) || ($ea > 0 && $ea < $sa))) {
$ea = 2 * M_PI;
}
if ($sa >= M_PI && $ea <= 2 * M_PI) {
$p = [$xc + $w * cos($sa), $yc - $h * sin($sa),
$xc + $w * cos($sa), $z + $yc - $h * sin($sa), ];
for ($a = $sa + $step; $a < $ea; $a += $step) {
$p[] = $xc + $w * cos($a);
$p[] = $z + $yc - $h * sin($a);
}
$p[] = $xc + $w * cos($ea);
$p[] = $z + $yc - $h * sin($ea);
$p[] = $xc + $w * cos($ea);
$p[] = $yc - $h * sin($ea);
$img->SetColor($edgecolor);
$img->Polygon($p);
}
}
}
public function Stroke($img, $aaoption = 0)
{
$n = safe_count($this->data);
// If user hasn't set the colors use the theme array
if ($this->setslicecolors == null) {
$colors = array_keys($img->rgb->rgb_table);
sort($colors);
$idx_a = $this->themearr[$this->theme];
$ca = [];
$m = safe_count($idx_a);
for ($i = 0; $i < $m; ++$i) {
$ca[$i] = $colors[$idx_a[$i]];
}
$ca = array_reverse(array_slice($ca, 0, $n));
} else {
$ca = $this->setslicecolors;
}
if ($this->posx <= 1 && $this->posx > 0) {
$xc = round($this->posx * $img->width);
} else {
$xc = $this->posx;
}
if ($this->posy <= 1 && $this->posy > 0) {
$yc = round($this->posy * $img->height);
} else {
$yc = $this->posy;
}
if ($this->radius <= 1) {
$width = floor($this->radius * min($img->width, $img->height));
// Make sure that the pie doesn't overflow the image border
// The 0.9 factor is simply an extra margin to leave some space
// between the pie an the border of the image.
$width = min($width, min($xc * 0.9, ($yc * 90 / $this->angle - $width / 4) * 0.9));
} else {
$width = $this->radius * ($aaoption === 1 ? 2 : 1);
}
// Add a sanity check for width
if ($width < 1) {
Util\JpGraphError::RaiseL(14007); //("Width for 3D Pie is 0. Specify a size > 0");
}
// Establish a thickness. By default the thickness is a fifth of the
// pie slice width (=pie radius) but since the perspective depends
// on the inclination angle we use some heuristics to make the edge
// slightly thicker the less the angle.
// Has user specified an absolute thickness? In that case use
// that instead
if ($this->iThickness) {
$thick = $this->iThickness;
$thick *= ($aaoption === 1 ? 2 : 1);
} else {
$thick = $width / 12;
}
$a = $this->angle;
if ($a <= 30) {
$thick *= 1.6;
} elseif ($a <= 40) {
$thick *= 1.4;
} elseif ($a <= 50) {
$thick *= 1.2;
} elseif ($a <= 60) {
$thick *= 1.0;
} elseif ($a <= 70) {
$thick *= 0.8;
} elseif ($a <= 80) {
$thick *= 0.7;
} else {
$thick *= 0.6;
}
$thick = floor($thick);
if ($this->explode_all) {
for ($i = 0; $i < $n; ++$i) {
$this->explode_radius[$i] = $this->explode_r;
}
}
$this->Pie3D(
$aaoption,
$img,
$this->data,
$ca,
$xc,
$yc,
$width,
$this->angle,
$thick,
0.65,
$this->startangle,
$this->edgecolor,
$this->edgeweight
);
// Adjust title position
if ($aaoption != 1) {
$this->title->SetPos($xc, $yc - $this->title->GetFontHeight($img) - $width / 2 - $this->title->margin, 'center', 'bottom');
$this->title->Stroke($img);
}
}
/**
* PRIVATE METHODS.
*
* @param mixed $label
* @param mixed $img
* @param mixed $a
* @param mixed $xp
* @param mixed $yp
* @param mixed $z
*/
// Position the labels of each slice
public function StrokeLabels($label, $img, $a, $xp, $yp, $z)
{
$this->value->halign = 'left';
$this->value->valign = 'top';
// Position the axis title.
// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
// that intersects with the extension of the corresponding axis. The code looks a little
// bit messy but this is really the only way of having a reasonable position of the
// axis titles.
$this->value->ApplyFont($img);
$h = $img->GetTextHeight($label);
// For numeric values the format of the display value
// must be taken into account
if (is_numeric($label)) {
if ($label >= 0) {
$w = $img->GetTextWidth(sprintf($this->value->format, $label));
} else {
$w = $img->GetTextWidth(sprintf($this->value->negformat, $label));
}
} else {
$w = $img->GetTextWidth($label);
}
while ($a > 2 * M_PI) {
$a -= 2 * M_PI;
}
if ($a >= 7 * M_PI / 4 || $a <= M_PI / 4) {
$dx = 0;
}
if ($a >= M_PI / 4 && $a <= 3 * M_PI / 4) {
$dx = ($a - M_PI / 4) * 2 / M_PI;
}
if ($a >= 3 * M_PI / 4 && $a <= 5 * M_PI / 4) {
$dx = 1;
}
if ($a >= 5 * M_PI / 4 && $a <= 7 * M_PI / 4) {
$dx = (1 - ($a - M_PI * 5 / 4) * 2 / M_PI);
}
if ($a >= 7 * M_PI / 4) {
$dy = (($a - M_PI) - 3 * M_PI / 4) * 2 / M_PI;
}
if ($a <= M_PI / 4) {
$dy = (1 - $a * 2 / M_PI);
}
if ($a >= M_PI / 4 && $a <= 3 * M_PI / 4) {
$dy = 1;
}
if ($a >= 3 * M_PI / 4 && $a <= 5 * M_PI / 4) {
$dy = (1 - ($a - 3 * M_PI / 4) * 2 / M_PI);
}
if ($a >= 5 * M_PI / 4 && $a <= 7 * M_PI / 4) {
$dy = 0;
}
$x = round($xp - $dx * $w);
$y = round($yp - $dy * $h);
// Mark anchor point for debugging
/*
$img->SetColor('red');
$img->Line($xp-10,$yp,$xp+10,$yp);
$img->Line($xp,$yp-10,$xp,$yp+10);
*/
$oldmargin = $this->value->margin;
$this->value->margin = 0;
$this->value->Stroke($img, $label, $x, $y);
$this->value->margin = $oldmargin;
}
} // @class
/* EOF */