Idrinth/IDotD

View on GitHub
src/libs/big.js

Summary

Maintainability
F
3 days
Test Coverage
/* big.js v3.1.3 https://github.com/MikeMcl/big.js/LICENCE */
(function(global) {
  "use strict";
  /*
  big.js v3.1.3
  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
  https://github.com/MikeMcl/big.js/
  Copyright (c) 2014 Michael Mclaughlin <M8ch88l@gmail.com>
  MIT Expat Licence
*/

  /***************************** EDITABLE DEFAULTS ******************************/

  // The default values below must be integers within the stated ranges.

  /*
     * The maximum number of decimal places of the results of operations
     * involving division: div and sqrt, and pow with negative exponents.
     */
  var DP = 20, // 0 to MAX_DP
    /*
         * The rounding mode used when rounding to the above decimal places.
         *
         * 0 Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)
         * 1 To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)
         * 2 To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)
         * 3 Away from zero.                                  (ROUND_UP)
         */
    RM = 1, // 0, 1, 2 or 3
    // The maximum value of DP and Big.DP.
    MAX_DP = 1e6, // 0 to 1000000
    // The maximum magnitude of the exponent argument to the pow method.
    MAX_POWER = 1e6, // 1 to 1000000
    /*
         * The exponent value at and beneath which toString returns exponential
         * notation.
         * JavaScript's Number type: -7
         * -1000000 is the minimum recommended exponent value of a Big.
         */
    E_NEG = -7, // 0 to -1000000
    /*
         * The exponent value at and above which toString returns exponential
         * notation.
         * JavaScript's Number type: 21
         * 1000000 is the maximum recommended exponent value of a Big.
         * (This limit is not enforced or checked.)
         */
    E_POS = 21, // 0 to 1000000
    /******************************************************************************/

    // The shared prototype object.
    P = {},
    isValid = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
    Big;

  /*
     * Create and return a Big constructor.
     *
     */
  function bigFactory() {
    /*
         * The Big constructor and exported function.
         * Create and return a new instance of a Big number object.
         *
         * n {number|string|Big} A numeric value.
         */
    function Big(n) {
      var x = this;

      // Enable constructor usage without new.
      if (!(x instanceof Big)) {
        return n === void 0 ? bigFactory() : new Big(n);
      }

      // Duplicate.
      if (n instanceof Big) {
        x.s = n.s;
        x.e = n.e;
        x.c = n.c.slice();
      } else {
        parse(x, n);
      }

      /*
             * Retain a reference to this Big constructor, and shadow
             * Big.prototype.constructor which points to Object.
             */
      x.constructor = Big;
    }

    Big.prototype = P;
    Big.DP = DP;
    Big.RM = RM;
    Big.E_NEG = E_NEG;
    Big.E_POS = E_POS;

    return Big;
  }

  // Private functions

  /*
     * Return a string representing the value of Big x in normal or exponential
     * notation to dp fixed decimal places or significant digits.
     *
     * x {Big} The Big to format.
     * dp {number} Integer, 0 to MAX_DP inclusive.
     * toE {number} 1 (toExponential), 2 (toPrecision) or undefined (toFixed).
     */
  function format(x, dp, toE) {
    var Big = x.constructor,
      // The index (normal notation) of the digit that may be rounded up.
      i = dp - (x = new Big(x)).e,
      c = x.c;

    // Round?
    if (c.length > ++dp) {
      rnd(x, i, Big.RM);
    }

    if (!c[0]) {
      ++i;
    } else if (toE) {
      i = dp;

      // toFixed
    } else {
      c = x.c;

      // Recalculate i as x.e may have changed if value rounded up.
      i = x.e + i + 1;
    }

    // Append zeros?
    for (; c.length < i; c.push(0)) {
    }
    i = x.e;

    /*
         * toPrecision returns exponential notation if the number of
         * significant digits specified is less than the number of digits
         * necessary to represent the integer part of the value in normal
         * notation.
         */
    return toE === 1 || (toE && (dp <= i || i <= Big.E_NEG))
      ? // Exponential notation.
        (x.s < 0 && c[0] ? "-" : "") +
          (c.length > 1 ? c[0] + "." + c.join("").slice(1) : c[0]) +
          (i < 0 ? "e" : "e+") +
          i
      : // Normal notation.
        x.toString();
  }

  /*
     * Parse the number or string value passed to a Big constructor.
     *
     * x {Big} A Big number instance.
     * n {number|string} A numeric value.
     */
  function parse(x, n) {
    var e, i, nL;

    // Minus zero?
    if (n === 0 && 1 / n < 0) {
      n = "-0";

      // Ensure n is string and check validity.
    } else if (!isValid.test((n += ""))) {
      throwErr(NaN);
    }

    // Determine sign.
    x.s = n.charAt(0) == "-" ? ((n = n.slice(1)), -1) : 1;

    // Decimal point?
    if ((e = n.indexOf(".")) > -1) {
      n = n.replace(".", "");
    }

    // Exponential form?
    if ((i = n.search(/e/i)) > 0) {
      // Determine exponent.
      if (e < 0) {
        e = i;
      }
      e += +n.slice(i + 1);
      n = n.substring(0, i);
    } else if (e < 0) {
      // Integer.
      e = n.length;
    }

    // Determine leading zeros.
    for (i = 0; n.charAt(i) == "0"; i++) {
    }

    if (i == (nL = n.length)) {
      // Zero.
      x.c = [(x.e = 0)];
    } else {
      // Determine trailing zeros.
      for (; n.charAt(--nL) == "0"; ) {
      }

      x.e = e - i - 1;
      x.c = [];

      // Convert string to array of digits without leading/trailing zeros.
      for (e = 0; i <= nL; x.c[e++] = +n.charAt(i++)) {
      }
    }

    return x;
  }

  /*
     * Round Big x to a maximum of dp decimal places using rounding mode rm.
     * Called by div, sqrt and round.
     *
     * x {Big} The Big to round.
     * dp {number} Integer, 0 to MAX_DP inclusive.
     * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
     * [more] {boolean} Whether the result of division was truncated.
     */
  function rnd(x, dp, rm, more) {
    var u, xc = x.c, i = x.e + dp + 1;

    if (rm === 1) {
      // xc[i] is the digit after the digit that may be rounded up.
      more = xc[i] >= 5;
    } else if (rm === 2) {
      more =
        xc[i] > 5 ||
        (xc[i] == 5 && (more || i < 0 || xc[i + 1] !== u || xc[i - 1] & 1));
    } else if (rm === 3) {
      more = more || xc[i] !== u || i < 0;
    } else {
      more = false;

      if (rm !== 0) {
        throwErr("!Big.RM!");
      }
    }

    if (i < 1 || !xc[0]) {
      if (more) {
        // 1, 0.1, 0.01, 0.001, 0.0001 etc.
        x.e = -dp;
        x.c = [1];
      } else {
        // Zero.
        x.c = [(x.e = 0)];
      }
    } else {
      // Remove any digits after the required decimal places.
      xc.length = i--;

      // Round up?
      if (more) {
        // Rounding up may mean the previous digit has to be rounded up.
        for (; ++xc[i] > 9; ) {
          xc[i] = 0;

          if (!i--) {
            ++x.e;
            xc.unshift(1);
          }
        }
      }

      // Remove trailing zeros.
      for (i = xc.length; !xc[--i]; xc.pop()) {
      }
    }

    return x;
  }

  /*
     * Throw a BigError.
     *
     * message {string} The error message.
     */
  function throwErr(message) {
    var err = new Error(message);
    err.name = "BigError";

    throw err;
  }

  // Prototype/instance methods

  /*
     * Return a new Big whose value is the absolute value of this Big.
     */
  P.abs = function() {
    var x = new this.constructor(this);
    x.s = 1;

    return x;
  };

  /*
     * Return
     * 1 if the value of this Big is greater than the value of Big y,
     * -1 if the value of this Big is less than the value of Big y, or
     * 0 if they have the same value.
    */
  P.cmp = function(y) {
    var xNeg,
      x = this,
      xc = x.c,
      yc = (y = new x.constructor(y)).c,
      i = x.s,
      j = y.s,
      k = x.e,
      l = y.e;

    // Either zero?
    if (!xc[0] || !yc[0]) {
      return !xc[0] ? !yc[0] ? 0 : -j : i;
    }

    // Signs differ?
    if (i != j) {
      return i;
    }
    xNeg = i < 0;

    // Compare exponents.
    if (k != l) {
      return (k > l) ^ xNeg ? 1 : -1;
    }

    i = -1;
    j = (k = xc.length) < (l = yc.length) ? k : l;

    // Compare digit by digit.
    for (; ++i < j; ) {
      if (xc[i] != yc[i]) {
        return (xc[i] > yc[i]) ^ xNeg ? 1 : -1;
      }
    }

    // Compare lengths.
    return k == l ? 0 : (k > l) ^ xNeg ? 1 : -1;
  };

  /*
     * Return a new Big whose value is the value of this Big divided by the
     * value of Big y, rounded, if necessary, to a maximum of Big.DP decimal
     * places using rounding mode Big.RM.
     */
  P.div = function(y) {
    var x = this,
      Big = x.constructor,
      // dividend
      dvd = x.c,
      //divisor
      dvs = (y = new Big(y)).c,
      s = x.s == y.s ? 1 : -1,
      dp = Big.DP;

    if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
      throwErr("!Big.DP!");
    }

    // Either 0?
    if (!dvd[0] || !dvs[0]) {
      // If both are 0, throw NaN
      if (dvd[0] == dvs[0]) {
        throwErr(NaN);
      }

      // If dvs is 0, throw +-Infinity.
      if (!dvs[0]) {
        throwErr(s / 0);
      }

      // dvd is 0, return +-0.
      return new Big(s * 0);
    }

    var dvsL,
      dvsT,
      next,
      cmp,
      remI,
      u,
      dvsZ = dvs.slice(),
      dvdI = (dvsL = dvs.length),
      dvdL = dvd.length,
      // remainder
      rem = dvd.slice(0, dvsL),
      remL = rem.length,
      // quotient
      q = y,
      qc = (q.c = []),
      qi = 0,
      digits = dp + (q.e = x.e - y.e) + 1;

    q.s = s;
    s = digits < 0 ? 0 : digits;

    // Create version of divisor with leading zero.
    dvsZ.unshift(0);

    // Add zeros to make remainder as long as divisor.
    for (; remL++ < dvsL; rem.push(0)) {
    }

    do {
      // 'next' is how many times the divisor goes into current remainder.
      for (next = 0; next < 10; next++) {
        // Compare divisor and remainder.
        if (dvsL != (remL = rem.length)) {
          cmp = dvsL > remL ? 1 : -1;
        } else {
          for ((remI = -1), (cmp = 0); ++remI < dvsL; ) {
            if (dvs[remI] != rem[remI]) {
              cmp = dvs[remI] > rem[remI] ? 1 : -1;
              break;
            }
          }
        }

        // If divisor < remainder, subtract divisor from remainder.
        if (cmp < 0) {
          // Remainder can't be more than 1 digit longer than divisor.
          // Equalise lengths using divisor with extra leading zero?
          for (dvsT = remL == dvsL ? dvs : dvsZ; remL; ) {
            if (rem[--remL] < dvsT[remL]) {
              remI = remL;

              for (; remI && !rem[--remI]; rem[remI] = 9) {
              }
              --rem[remI];
              rem[remL] += 10;
            }
            rem[remL] -= dvsT[remL];
          }
          for (; !rem[0]; rem.shift()) {
          }
        } else {
          break;
        }
      }

      // Add the 'next' digit to the result array.
      qc[qi++] = cmp ? next : ++next;

      // Update the remainder.
      if (rem[0] && cmp) {
        rem[remL] = dvd[dvdI] || 0;
      } else {
        rem = [dvd[dvdI]];
      }
    } while ((dvdI++ < dvdL || rem[0] !== u) && s--);

    // Leading zero? Do not remove if result is simply zero (qi == 1).
    if (!qc[0] && qi != 1) {
      // There can't be more than one zero.
      qc.shift();
      q.e--;
    }

    // Round?
    if (qi > digits) {
      rnd(q, dp, Big.RM, rem[0] !== u);
    }

    return q;
  };

  /*
     * Return true if the value of this Big is equal to the value of Big y,
     * otherwise returns false.
     */
  P.eq = function(y) {
    return !this.cmp(y);
  };

  /*
     * Return true if the value of this Big is greater than the value of Big y,
     * otherwise returns false.
     */
  P.gt = function(y) {
    return this.cmp(y) > 0;
  };

  /*
     * Return true if the value of this Big is greater than or equal to the
     * value of Big y, otherwise returns false.
     */
  P.gte = function(y) {
    return this.cmp(y) > -1;
  };

  /*
     * Return true if the value of this Big is less than the value of Big y,
     * otherwise returns false.
     */
  P.lt = function(y) {
    return this.cmp(y) < 0;
  };

  /*
     * Return true if the value of this Big is less than or equal to the value
     * of Big y, otherwise returns false.
     */
  P.lte = function(y) {
    return this.cmp(y) < 1;
  };

  /*
     * Return a new Big whose value is the value of this Big minus the value
     * of Big y.
     */
  P.sub = P.minus = function(y) {
    var i,
      j,
      t,
      xLTy,
      x = this,
      Big = x.constructor,
      a = x.s,
      b = (y = new Big(y)).s;

    // Signs differ?
    if (a != b) {
      y.s = -b;
      return x.plus(y);
    }

    var xc = x.c.slice(), xe = x.e, yc = y.c, ye = y.e;

    // Either zero?
    if (!xc[0] || !yc[0]) {
      // y is non-zero? x is non-zero? Or both are zero.
      return yc[0] ? ((y.s = -b), y) : new Big(xc[0] ? x : 0);
    }

    // Determine which is the bigger number.
    // Prepend zeros to equalise exponents.
    if ((a = xe - ye)) {
      if ((xLTy = a < 0)) {
        a = -a;
        t = xc;
      } else {
        ye = xe;
        t = yc;
      }

      t.reverse();
      for (b = a; b--; t.push(0)) {
      }
      t.reverse();
    } else {
      // Exponents equal. Check digit by digit.
      j = ((xLTy = xc.length < yc.length) ? xc : yc).length;

      for (a = b = 0; b < j; b++) {
        if (xc[b] != yc[b]) {
          xLTy = xc[b] < yc[b];
          break;
        }
      }
    }

    // x < y? Point xc to the array of the bigger number.
    if (xLTy) {
      t = xc;
      xc = yc;
      yc = t;
      y.s = -y.s;
    }

    /*
         * Append zeros to xc if shorter. No need to add zeros to yc if shorter
         * as subtraction only needs to start at yc.length.
         */
    if ((b = (j = yc.length) - (i = xc.length)) > 0) {
      for (; b--; xc[i++] = 0) {
      }
    }

    // Subtract yc from xc.
    for (b = i; j > a; ) {
      if (xc[--j] < yc[j]) {
        for (i = j; i && !xc[--i]; xc[i] = 9) {
        }
        --xc[i];
        xc[j] += 10;
      }
      xc[j] -= yc[j];
    }

    // Remove trailing zeros.
    for (; xc[--b] === 0; xc.pop()) {
    }

    // Remove leading zeros and adjust exponent accordingly.
    for (; xc[0] === 0; ) {
      xc.shift();
      --ye;
    }

    if (!xc[0]) {
      // n - n = +0
      y.s = 1;

      // Result must be zero.
      xc = [(ye = 0)];
    }

    y.c = xc;
    y.e = ye;

    return y;
  };

  /*
     * Return a new Big whose value is the value of this Big modulo the
     * value of Big y.
     */
  P.mod = function(y) {
    var yGTx, x = this, Big = x.constructor, a = x.s, b = (y = new Big(y)).s;

    if (!y.c[0]) {
      throwErr(NaN);
    }

    x.s = y.s = 1;
    yGTx = y.cmp(x) == 1;
    x.s = a;
    y.s = b;

    if (yGTx) {
      return new Big(x);
    }

    a = Big.DP;
    b = Big.RM;
    Big.DP = Big.RM = 0;
    x = x.div(y);
    Big.DP = a;
    Big.RM = b;

    return this.minus(x.times(y));
  };

  /*
     * Return a new Big whose value is the value of this Big plus the value
     * of Big y.
     */
  P.add = P.plus = function(y) {
    var t, x = this, Big = x.constructor, a = x.s, b = (y = new Big(y)).s;

    // Signs differ?
    if (a != b) {
      y.s = -b;
      return x.minus(y);
    }

    var xe = x.e, xc = x.c, ye = y.e, yc = y.c;

    // Either zero?
    if (!xc[0] || !yc[0]) {
      // y is non-zero? x is non-zero? Or both are zero.
      return yc[0] ? y : new Big(xc[0] ? x : a * 0);
    }
    xc = xc.slice();

    // Prepend zeros to equalise exponents.
    // Note: Faster to use reverse then do unshifts.
    if ((a = xe - ye)) {
      if (a > 0) {
        ye = xe;
        t = yc;
      } else {
        a = -a;
        t = xc;
      }

      t.reverse();
      for (; a--; t.push(0)) {
      }
      t.reverse();
    }

    // Point xc to the longer array.
    if (xc.length - yc.length < 0) {
      t = yc;
      yc = xc;
      xc = t;
    }
    a = yc.length;

    /*
         * Only start adding at yc.length - 1 as the further digits of xc can be
         * left as they are.
         */
    for (b = 0; a; ) {
      b = ((xc[--a] = xc[a] + yc[a] + b) / 10) | 0;
      xc[a] %= 10;
    }

    // No need to check for zero, as +x + +y != 0 && -x + -y != 0

    if (b) {
      xc.unshift(b);
      ++ye;
    }

    // Remove trailing zeros.
    for (a = xc.length; xc[--a] === 0; xc.pop()) {
    }

    y.c = xc;
    y.e = ye;

    return y;
  };

  /*
     * Return a Big whose value is the value of this Big raised to the power n.
     * If n is negative, round, if necessary, to a maximum of Big.DP decimal
     * places using rounding mode Big.RM.
     *
     * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
     */
  P.pow = function(n) {
    var x = this, one = new x.constructor(1), y = one, isNeg = n < 0;

    if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) {
      throwErr("!pow!");
    }

    n = isNeg ? -n : n;

    for (;;) {
      if (n & 1) {
        y = y.times(x);
      }
      n >>= 1;

      if (!n) {
        break;
      }
      x = x.times(x);
    }

    return isNeg ? one.div(y) : y;
  };

  /*
     * Return a new Big whose value is the value of this Big rounded to a
     * maximum of dp decimal places using rounding mode rm.
     * If dp is not specified, round to 0 decimal places.
     * If rm is not specified, use Big.RM.
     *
     * [dp] {number} Integer, 0 to MAX_DP inclusive.
     * [rm] 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
     */
  P.round = function(dp, rm) {
    var x = this, Big = x.constructor;

    if (dp == null) {
      dp = 0;
    } else if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
      throwErr("!round!");
    }
    rnd((x = new Big(x)), dp, rm == null ? Big.RM : rm);

    return x;
  };

  /*
     * Return a new Big whose value is the square root of the value of this Big,
     * rounded, if necessary, to a maximum of Big.DP decimal places using
     * rounding mode Big.RM.
     */
  P.sqrt = function() {
    var estimate,
      r,
      approx,
      x = this,
      Big = x.constructor,
      xc = x.c,
      i = x.s,
      e = x.e,
      half = new Big("0.5");

    // Zero?
    if (!xc[0]) {
      return new Big(x);
    }

    // If negative, throw NaN.
    if (i < 0) {
      throwErr(NaN);
    }

    // Estimate.
    i = Math.sqrt(x.toString());

    // Math.sqrt underflow/overflow?
    // Pass x to Math.sqrt as integer, then adjust the result exponent.
    if (i === 0 || i === 1 / 0) {
      estimate = xc.join("");

      if (!((estimate.length + e) & 1)) {
        estimate += "0";
      }

      r = new Big(Math.sqrt(estimate).toString());
      r.e = (((e + 1) / 2) | 0) - (e < 0 || e & 1);
    } else {
      r = new Big(i.toString());
    }

    i = r.e + (Big.DP += 4);

    // Newton-Raphson iteration.
    do {
      approx = r;
      r = half.times(approx.plus(x.div(approx)));
    } while (approx.c.slice(0, i).join("") !== r.c.slice(0, i).join(""));

    rnd(r, (Big.DP -= 4), Big.RM);

    return r;
  };

  /*
     * Return a new Big whose value is the value of this Big times the value of
     * Big y.
     */
  P.mul = P.times = function(y) {
    var c,
      x = this,
      Big = x.constructor,
      xc = x.c,
      yc = (y = new Big(y)).c,
      a = xc.length,
      b = yc.length,
      i = x.e,
      j = y.e;

    // Determine sign of result.
    y.s = x.s == y.s ? 1 : -1;

    // Return signed 0 if either 0.
    if (!xc[0] || !yc[0]) {
      return new Big(y.s * 0);
    }

    // Initialise exponent of result as x.e + y.e.
    y.e = i + j;

    // If array xc has fewer digits than yc, swap xc and yc, and lengths.
    if (a < b) {
      c = xc;
      xc = yc;
      yc = c;
      j = a;
      a = b;
      b = j;
    }

    // Initialise coefficient array of result with zeros.
    for (c = new Array((j = a + b)); j--; c[j] = 0) {
    }

    // Multiply.

    // i is initially xc.length.
    for (i = b; i--; ) {
      b = 0;

      // a is yc.length.
      for (j = a + i; j > i; ) {
        // Current sum of products at this digit position, plus carry.
        b = c[j] + yc[i] * xc[j - i - 1] + b;
        c[j--] = b % 10;

        // carry
        b = (b / 10) | 0;
      }
      c[j] = (c[j] + b) % 10;
    }

    // Increment result exponent if there is a final carry.
    if (b) {
      ++y.e;
    }

    // Remove any leading zero.
    if (!c[0]) {
      c.shift();
    }

    // Remove trailing zeros.
    for (i = c.length; !c[--i]; c.pop()) {
    }
    y.c = c;

    return y;
  };

  /*
     * Return a string representing the value of this Big.
     * Return exponential notation if this Big has a positive exponent equal to
     * or greater than Big.E_POS, or a negative exponent equal to or less than
     * Big.E_NEG.
     */
  P.toString = P.valueOf = P.toJSON = function() {
    var x = this,
      Big = x.constructor,
      e = x.e,
      str = x.c.join(""),
      strL = str.length;

    // Exponential notation?
    if (e <= Big.E_NEG || e >= Big.E_POS) {
      str =
        str.charAt(0) +
        (strL > 1 ? "." + str.slice(1) : "") +
        (e < 0 ? "e" : "e+") +
        e;

      // Negative exponent?
    } else if (e < 0) {
      // Prepend zeros.
      for (; ++e; str = "0" + str) {
      }
      str = "0." + str;

      // Positive exponent?
    } else if (e > 0) {
      if (++e > strL) {
        // Append zeros.
        for (e -= strL; e--; str += "0") {
        }
      } else if (e < strL) {
        str = str.slice(0, e) + "." + str.slice(e);
      }

      // Exponent zero.
    } else if (strL > 1) {
      str = str.charAt(0) + "." + str.slice(1);
    }

    // Avoid '-0'
    return x.s < 0 && x.c[0] ? "-" + str : str;
  };

  /*
     ***************************************************************************
     * If toExponential, toFixed, toPrecision and format are not required they
     * can safely be commented-out or deleted. No redundant code will be left.
     * format is used only by toExponential, toFixed and toPrecision.
     ***************************************************************************
     */

  /*
     * Return a string representing the value of this Big in exponential
     * notation to dp fixed decimal places and rounded, if necessary, using
     * Big.RM.
     *
     * [dp] {number} Integer, 0 to MAX_DP inclusive.
     */
  P.toExponential = function(dp) {
    if (dp == null) {
      dp = this.c.length - 1;
    } else if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
      throwErr("!toExp!");
    }

    return format(this, dp, 1);
  };

  /*
     * Return a string representing the value of this Big in normal notation
     * to dp fixed decimal places and rounded, if necessary, using Big.RM.
     *
     * [dp] {number} Integer, 0 to MAX_DP inclusive.
     */
  P.toFixed = function(dp) {
    var str, x = this, Big = x.constructor, neg = Big.E_NEG, pos = Big.E_POS;

    // Prevent the possibility of exponential notation.
    Big.E_NEG = -(Big.E_POS = 1 / 0);

    if (dp == null) {
      str = x.toString();
    } else if (dp === ~~dp && dp >= 0 && dp <= MAX_DP) {
      str = format(x, x.e + dp);

      // (-0).toFixed() is '0', but (-0.1).toFixed() is '-0'.
      // (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
      if (x.s < 0 && x.c[0] && str.indexOf("-") < 0) {
        //E.g. -0.5 if rounded to -0 will cause toString to omit the minus sign.
        str = "-" + str;
      }
    }
    Big.E_NEG = neg;
    Big.E_POS = pos;

    if (!str) {
      throwErr("!toFix!");
    }

    return str;
  };

  /*
     * Return a string representing the value of this Big rounded to sd
     * significant digits using Big.RM. Use exponential notation if sd is less
     * than the number of digits necessary to represent the integer part of the
     * value in normal notation.
     *
     * sd {number} Integer, 1 to MAX_DP inclusive.
     */
  P.toPrecision = function(sd) {
    if (sd == null) {
      return this.toString();
    } else if (sd !== ~~sd || sd < 1 || sd > MAX_DP) {
      throwErr("!toPre!");
    }

    return format(this, sd - 1, 2);
  };

  // Export

  Big = bigFactory();

  //AMD.
  if (typeof define === "function" && define.amd) {
    define(function() {
      return Big;
    });

    // Node and other CommonJS-like environments that support module.exports.
  } else if (typeof module !== "undefined" && module.exports) {
    module.exports = Big;

    //Browser.
  } else {
    global.Big = Big;
  }
})(this);