self_instruct/src/train_orpo.py
import json
import random
import fire
from typing import List, Dict
import wandb
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.data import Dataset
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TrainingArguments, Trainer
from trl import ORPOConfig, ORPOTrainer
from datasets import Dataset as HFDataset
from unsloth import PatchDPOTrainer, FastLanguageModel
from src.util.io import read_jsonl
PatchDPOTrainer()
DEFAULT_SYSTEM_MESSAGE = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
class ChatRewardDataset(Dataset):
def __init__(
self,
original_records: List[Dict],
tokenizer: AutoTokenizer,
max_tokens_count: int,
sample_rate: float = 1.0
):
self.original_records = original_records
self.tokenizer = tokenizer
self.max_tokens_count = max_tokens_count
self.sample_rate = sample_rate
self.records = []
for record in tqdm(original_records):
if random.random() > self.sample_rate:
continue
prompt_messages = record["prompt"]
if prompt_messages[0]["role"] != "system":
prompt_messages.insert(0, {"role": "system", "content": DEFAULT_SYSTEM_MESSAGE})
prompt = self.tokenizer.apply_chat_template(
prompt_messages,
add_generation_prompt=True,
tokenize=False
)
prompt = prompt.replace(self.tokenizer.bos_token, "")
prompt_tokens = self.tokenizer.apply_chat_template(
prompt_messages,
add_generation_prompt=True,
tokenize=True
)
chosen = record["chosen"][0]["content"]
chosen_tokens = self.tokenizer(chosen)["input_ids"]
rejected = record["rejected"][0]["content"]
rejected_tokens = self.tokenizer(rejected)["input_ids"]
if len(prompt_tokens) + len(chosen_tokens) > self.max_tokens_count:
continue
if len(prompt_tokens) + len(rejected_tokens) > self.max_tokens_count:
continue
self.records.append({
"prompt": prompt,
"chosen": chosen,
"rejected": rejected
})
def __len__(self):
return len(self.records)
def __getitem__(self, index):
return self.records[index]
def train(
config_file: str,
train_path: str,
eval_path: str,
output_dir: str,
sample_rate: float = 1.0
):
with open(config_file, "r") as r:
config = json.load(r)
max_tokens_count = config["max_tokens_count"]
max_seq_length = config.get("max_seq_length", max_tokens_count)
model_name = config["model_name"]
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=torch.bfloat16,
load_in_8bit=config["load_in_8bit"],
load_in_4bit=config["load_in_4bit"],
attn_implementation="flash_attention_2",
)
#tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = "<|begin_of_text|>"
tokenizer.eos_token = "<|eot_id|>"
tokenizer.padding_side = "left"
tokenizer.save_pretrained(output_dir)
lora_config = config["lora"]
#lora_config = LoraConfig(**lora_config)
if lora_config:
model = FastLanguageModel.get_peft_model(
model,
**config["lora"],
max_seq_length=max_seq_length
)
#model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# load_in_8bit=config["load_in_8bit"],
# load_in_4bit=config["load_in_4bit"],
# attn_implementation="flash_attention_2",
#)
train_records = read_jsonl(train_path)
train_dataset = ChatRewardDataset(
train_records,
tokenizer=tokenizer,
max_tokens_count=max_tokens_count,
sample_rate=sample_rate
)
train_dataset = HFDataset.from_list(train_dataset)
eval_records = read_jsonl(eval_path)
eval_dataset = ChatRewardDataset(
eval_records,
tokenizer=tokenizer,
max_tokens_count=max_tokens_count,
sample_rate=sample_rate
)
eval_dataset = HFDataset.from_list(eval_dataset)
print(train_dataset[0])
trainer_config = config.get("trainer")
if trainer_config.get("report_to", "wandb") == "wandb":
wandb.init(project="rulm_self_instruct", name=config_file)
training_args = ORPOConfig(
output_dir=output_dir,
report_to="wandb",
**config["orpo"],
**trainer_config
)
trainer = ORPOTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
#peft_config=lora_config
)
trainer.train()
model.save_pretrained(output_dir)
if __name__ == "__main__":
fire.Fire(train)