src/Samsara/Fermat/Core/Numbers.php
<?php namespace Samsara\Fermat\Core; use Samsara\Exceptions\UsageError\IntegrityConstraint;use Samsara\Fermat\Core\Enums\NumberBase;use Samsara\Fermat\Core\Provider\ConstantProvider;use Samsara\Fermat\Core\Types\Base\Number;use Samsara\Fermat\Core\Types\Decimal;use Samsara\Fermat\Core\Types\Fraction;use Samsara\Fermat\Core\Values\ImmutableDecimal;use Samsara\Fermat\Core\Values\ImmutableFraction;use Samsara\Fermat\Core\Values\MutableDecimal;use Samsara\Fermat\Core\Values\MutableFraction; /** * This class contains useful factory methods to create various numbers, verify the * class of a given number, and generally handle all of the formatting necessary to * satisfy the various constructors of valid value objects. * * @package Samsara\Fermat\Core */class Numbers{ public const MUTABLE = MutableDecimal::class; public const IMMUTABLE = ImmutableDecimal::class; public const MUTABLE_FRACTION = MutableFraction::class; public const IMMUTABLE_FRACTION = ImmutableFraction::class; /* 105 digits after decimal, which is going to be overkill in almost all places */ public const PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679'; /* Tau (2pi) to 100 digits */ public const TAU = '6.2831853071795864769252867665590057683943387987502116419498891846156328125724179972560696506842341359'; /* Euler's Number to 100 digits */ public const E = '2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427'; /* Golden Ratio to 100 digits */ public const GOLDEN_RATIO = '1.618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137'; /* Natural log of 10 to 100 digits */ public const LN_10 = '2.302585092994045684017991454684364207601101488628772976033327900967572609677352480235997205089598298'; /* Natural log of 2 to 100 digits */ public const LN_2 = '0.693147180559945309417232121458176568075500134360255254120680009493393621969694715605863326996418687'; /* The value of i^i */ public const I_POW_I = '0.2078795763507619085469556198349787700338778416317696080751358830554198772854821397886002778654260353'; /* Euler-Mascheroni Constant */ public const E_M = '0.5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495'; /** * This class will make and return an instance of a concrete value. * * The main reason for this class is that you can pass an unknown value instance as the * $type parameter and it will behave as if you passed the FQCN. * * @param mixed $type An instance of FQCN for any Fermat value class. * @param mixed $value Any value which is valid for the constructor which will be called. * @param int|null $scale The scale setting the created instance should have. * @param NumberBase $base The base to create the number in. Note, this is not the same as the base of $value, which is always base-10 * * @return ImmutableDecimal|MutableDecimal|ImmutableFraction|MutableFraction|Fraction|Decimal * @throws IntegrityConstraint */ public static function make(mixed $type, mixed $value, ?int $scale = null, NumberBase $base = NumberBase::Ten) { if (is_object($type)) { $type = get_class($type); } if ($type === static::IMMUTABLE) { return new ImmutableDecimal(trim($value), $scale, $base, true); } if ($type === static::MUTABLE) { return new MutableDecimal(trim($value), $scale, $base, true); } if ($type === static::IMMUTABLE_FRACTION) { return self::makeFractionFromString($type, $value, $base); } if ($type === static::MUTABLE_FRACTION) { return self::makeFractionFromString($type, $value, $base); } throw new IntegrityConstraint( '$type must be an implemented concrete class that is supported', 'Provide a type that Decimal', 'The $type argument was not an instance of Decimal' ); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function make2Pi(int $scale = null): ImmutableDecimal { return self::makeTau($scale); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeE(int $scale = null): ImmutableDecimal { return self::makeConstant(self::E, $scale); } public static function makeEulerMascheroni(?int $scale = null): ImmutableDecimal { return self::makeConstant(self::E_M, $scale); } /** * @param string $type * @param string $value * @param NumberBase $base * * @return ImmutableFraction|MutableFraction|Fraction * @throws IntegrityConstraint */ public static function makeFractionFromString(string $type, string $value, NumberBase $base = NumberBase::Ten): ImmutableFraction|MutableFraction|Fraction { $parts = explode('/', $value); if (count($parts) > 2) { throw new IntegrityConstraint( 'Only one division symbol (/) can be used', 'Change the calling code to not provide more than one division symbol', 'makeFractionFromString needs either one or zero division symbols in the $value argument; ' . $value . ' given' ); } /** @var ImmutableDecimal $numerator */ $numerator = self::make(self::IMMUTABLE, trim($parts[0])); /** @var ImmutableDecimal $denominator */ $denominator = isset($parts[1]) ? self::make(self::IMMUTABLE, trim($parts[1])) : self::makeOne(); if ($type === self::IMMUTABLE_FRACTION) { return new ImmutableFraction($numerator, $denominator, $base); } if ($type === self::MUTABLE_FRACTION) { return new MutableFraction($numerator, $denominator, $base); } throw new IntegrityConstraint( 'Type must be an implementation of Fraction', 'Alter to calling code to use the correct type', 'makeFractionFromString can only make objects which implement the Fraction; ' . $type . ' given' ); } /** * @param $type * @param $value * @param int|null $scale * @param NumberBase $base * * @return Decimal * @throws IntegrityConstraint */ public static function makeFromBase10($type, $value, ?int $scale = null, NumberBase $base = NumberBase::Ten): Decimal { /** * @var ImmutableDecimal|MutableDecimal $number */ $number = self::make($type, $value, $scale); return $number->setBase($base); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeGoldenRatio(?int $scale = null): ImmutableDecimal { return self::makeConstant(self::GOLDEN_RATIO, $scale); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeNaturalLog10(?int $scale = null): ImmutableDecimal { return self::makeConstant(self::LN_10, $scale); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeNaturalLog2(?int $scale = null): ImmutableDecimal { return self::makeConstant(self::LN_2, $scale); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeOne(?int $scale = null): ImmutableDecimal { return new ImmutableDecimal(1, $scale); } /** * @param string|object $type * @param int|float|string|array|Decimal|Fraction $value * @param int|null $scale * @param NumberBase $base * * @return ImmutableDecimal|MutableDecimal|Decimal|ImmutableDecimal[]|MutableDecimal[]|Decimal[] * @throws IntegrityConstraint */The method makeOrDont() has a Cyclomatic Complexity of 11. The configured cyclomatic complexity threshold is 10. public static function makeOrDont(string|object $type, mixed $value, ?int $scale = null, NumberBase $base = NumberBase::Ten) { if (is_object($value)) { if ($value instanceof $type) { return $value; } if ($value instanceof Number) { return static::make($type, $value->getValue(NumberBase::Ten), $scale, $base); } } elseif (is_array($value)) { $newInput = []; foreach ($value as $key => $item) { $newInput[$key] = static::makeOrDont($type, $item, $scale, $base); } return $newInput; } elseif (is_string($value) || is_int($value) || is_float($value)) { $isImaginary = str_contains($value, 'i'); if (is_numeric($value) || $isImaginary) { return static::make($type, $value, $scale, $base); } } throw new IntegrityConstraint( '$input must be an int, float, numeric string, or an implementation of Decimal', 'Provide any of the MANY valid inputs', 'The $input argument was not numeric or an implementation of Decimal. Given value: ' . $value ); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makePi(int $scale = null): ImmutableDecimal { return self::makeConstant(self::PI, $scale); } /** * @param null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeTau($scale = null): ImmutableDecimal { if (!is_null($scale)) { if ($scale < 1) { throw new IntegrityConstraint( '$scale must be at least 1', 'Provide a scale within range', 'The E constant cannot have a scale less than 1' ); } if ($scale > 100) { $pi = new ImmutableDecimal(ConstantProvider::makePi($scale + 2), $scale + 2); /** @var ImmutableDecimal */ return $pi->multiply(2)->truncateToScale($scale); } return (new ImmutableDecimal(self::TAU, $scale + 1))->truncateToScale($scale); } return new ImmutableDecimal(self::TAU, 100); } /** * @param int|null $scale * * @return ImmutableDecimal * @throws IntegrityConstraint */ public static function makeZero(?int $scale = null): ImmutableDecimal { return new ImmutableDecimal(0, $scale); } private static function makeConstant(string $constant, ?int $scale): ImmutableDecimal { if (!is_null($scale)) { if ($scale < 1) { throw new IntegrityConstraint( 'Scale must be at least 1', 'Provide a scale within range', 'Cannot create a constant with a scale less than 1' ); } if ($scale > 100) { return new ImmutableDecimal( match ($constant) { self::LN_2 => ConstantProvider::makeLn2($scale), self::LN_10 => ConstantProvider::makeLn10($scale), self::GOLDEN_RATIO => ConstantProvider::makeGoldenRatio($scale), self::E => ConstantProvider::makeE($scale), self::PI => ConstantProvider::makePi($scale), self::E_M => self::E_M }, $scale ); } return (new ImmutableDecimal( $constant, $scale + 1 ))->truncateToScale($scale); } return new ImmutableDecimal( $constant, 100 ); } }