Method human_size_to_rails_method
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def human_size_to_rails_method(size)
s = size.dup
if size.ends_with?(" Byte")
s[-5..-1] = ""
elsif size.ends_with?(" Bytes")
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method mhz_to_human_size
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def mhz_to_human_size(size, *args)
precision = args.first
precision = precision[:precision] if precision.kind_of?(Hash)
precision ||= 1
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Wrap expressions with varying precedence with parentheses to avoid ambiguity. Open
s = s.abs * 1000**2
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Looks for expressions containing multiple binary operators
where precedence is ambiguous due to lack of parentheses. For example,
in 1 + 2 * 3
, the multiplication will happen before the addition, but
lexically it appears that the addition will happen first.
The cop does not consider unary operators (ie. !a
or -b
) or comparison
operators (ie. a =~ b
) because those are not ambiguous.
NOTE: Ranges are handled by Lint/AmbiguousRange
.
Example:
# bad
a + b * c
a || b && c
a ** b + c
# good (different precedence)
a + (b * c)
a || (b && c)
(a ** b) + c
# good (same precedence)
a + b + c
a * b / c % d