Showing 10,536 of 10,536 total issues

Identical blocks of code found in 2 locations. Consider refactoring.
Open

        if parameter_type == 'point':
            if point_id is None:
                cursor.close()
                cnx.close()
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
Severity: Major
Found in myems-api/core/combinedequipment.py and 1 other location - About 5 days to fix
myems-api/core/combinedequipment.py on lines 998..1084

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 565.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function on_get has a Cognitive Complexity of 271 (exceeds 5 allowed). Consider refactoring.
Open

    def on_get(req, resp):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
            access_control(req)
Severity: Minor
Found in myems-api/reports/combinedequipmentsaving.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function on_get has a Cognitive Complexity of 271 (exceeds 5 allowed). Consider refactoring.
Open

    def on_get(req, resp):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
            access_control(req)
Severity: Minor
Found in myems-api/reports/combinedequipmentplan.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function on_post has a Cognitive Complexity of 271 (exceeds 5 allowed). Consider refactoring.
Open

    def on_post(req, resp, id_):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
            access_control(req)
Severity: Minor
Found in myems-api/core/equipment.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    @staticmethod
    def on_get(req, resp, id_):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
Severity: Major
Found in myems-api/core/equipment.py and 1 other location - About 5 days to fix
myems-api/core/combinedequipment.py on lines 207..270

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 560.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    @staticmethod
    def on_get(req, resp, id_):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
Severity: Major
Found in myems-api/core/combinedequipment.py and 1 other location - About 5 days to fix
myems-api/core/equipment.py on lines 208..271

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 560.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function generate_excel has a Cognitive Complexity of 269 (exceeds 5 allowed). Consider refactoring.
Open

def generate_excel(report,
                   name,
                   base_period_start_datetime_local,
                   base_period_end_datetime_local,
                   reporting_start_datetime_local,
Severity: Minor
Found in myems-api/excelexporters/shopfloorload.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function generate_excel has a Cognitive Complexity of 269 (exceeds 5 allowed). Consider refactoring.
Open

def generate_excel(report,
                   name,
                   base_period_start_datetime_local,
                   base_period_end_datetime_local,
                   reporting_start_datetime_local,
Severity: Minor
Found in myems-api/excelexporters/storeload.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function on_get has a Cognitive Complexity of 268 (exceeds 5 allowed). Consider refactoring.
Open

    def on_get(req, resp):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
            access_control(req)
Severity: Minor
Found in myems-api/reports/spacesaving.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function on_get has a Cognitive Complexity of 268 (exceeds 5 allowed). Consider refactoring.
Open

    def on_get(req, resp):
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
            access_control(req)
Severity: Minor
Found in myems-api/reports/spaceplan.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function worker has a Cognitive Complexity of 266 (exceeds 5 allowed). Consider refactoring.
Open

def worker(space):

    ####################################################################################################################
    # Step 1: get all combined equipments associated with the space
    ####################################################################################################################
Severity: Minor
Found in myems-aggregation/space_energy_output_category.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function on_post has a Cognitive Complexity of 265 (exceeds 5 allowed). Consider refactoring.
Open

    def on_post(req, resp, id_):
        # check parameters
        if 'API-KEY' not in req.headers or \
                not isinstance(req.headers['API-KEY'], str) or \
                len(str.strip(req.headers['API-KEY'])) == 0:
Severity: Minor
Found in myems-api/core/space.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function generate_excel has a Cognitive Complexity of 264 (exceeds 5 allowed). Consider refactoring.
Open

def generate_excel(report,
                   name,
                   base_period_start_datetime_local,
                   base_period_end_datetime_local,
                   reporting_start_datetime_local,
Severity: Minor
Found in myems-api/excelexporters/equipmentload.py - About 5 days to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

File config.router.js has 1969 lines of code (exceeds 250 allowed). Consider refactoring.
Open

/**
 * INSPINIA - Responsive Admin Theme
 *
 * Inspinia theme use AngularUI Router to manage routing and views
 * Each view are defined as state.
Severity: Major
Found in myems-admin/app/config.router.js - About 5 days to fix

    Function calculate_hourly has a Cognitive Complexity of 258 (exceeds 5 allowed). Consider refactoring.
    Open

    def calculate_hourly(logger):
        while True:
            # the outermost while loop to reconnect server if there is a connection error
            ################################################################################################################
            # STEP 1: get all 'new' offline meter files
    Severity: Minor
    Found in myems-normalization/offlinemeter.py - About 5 days to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Function on_get has a Cognitive Complexity of 258 (exceeds 5 allowed). Consider refactoring.
    Open

        def on_get(req, resp):
            if 'API-KEY' not in req.headers or \
                    not isinstance(req.headers['API-KEY'], str) or \
                    len(str.strip(req.headers['API-KEY'])) == 0:
                access_control(req)
    Severity: Minor
    Found in myems-api/reports/combinedequipmentenergycategory.py - About 5 days to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Similar blocks of code found in 2 locations. Consider refactoring.
    Open

        @staticmethod
        @user_logger
        def on_put(req, resp, id_):
            """Handles PUT requests"""
            admin_control(req)
    Severity: Major
    Found in myems-api/core/gateway.py and 1 other location - About 5 days to fix
    myems-api/core/sensor.py on lines 238..302

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 531.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 2 locations. Consider refactoring.
    Open

        @staticmethod
        @user_logger
        def on_put(req, resp, id_):
            """Handles PUT requests"""
            admin_control(req)
    Severity: Major
    Found in myems-api/core/sensor.py and 1 other location - About 5 days to fix
    myems-api/core/gateway.py on lines 201..265

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 531.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Function on_get has a Cognitive Complexity of 251 (exceeds 5 allowed). Consider refactoring.
    Open

        def on_get(req, resp):
            if 'API-KEY' not in req.headers or \
                    not isinstance(req.headers['API-KEY'], str) or \
                    len(str.strip(req.headers['API-KEY'])) == 0:
                access_control(req)
    Severity: Minor
    Found in myems-api/reports/spaceenergycategory.py - About 5 days to fix

    Cognitive Complexity

    Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

    A method's cognitive complexity is based on a few simple rules:

    • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
    • Code is considered more complex for each "break in the linear flow of the code"
    • Code is considered more complex when "flow breaking structures are nested"

    Further reading

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

            if energy_category_set is not None and len(energy_category_set) > 0:
                for energy_category_id in energy_category_set:
                    result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
                    result['reporting_period']['energy_category_ids'].append(energy_category_id)
                    result['reporting_period']['units'].append(config.currency_unit)
    Severity: Major
    Found in myems-api/reports/combinedequipmentincome.py and 1 other location - About 5 days to fix
    myems-api/reports/equipmentincome.py on lines 529..551

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 513.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Severity
    Category
    Status
    Source
    Language