Showing 13 of 16 total issues
Method has too many lines. [39/30] Open
def scalar_oattr(name, options = {})
o, options = {}, options.dup
o[k = :allow_nil] = options.include?(k) ? options.delete(k) : false
o[k = :key] = options.delete(k) || name
o[k = :type] = options.delete(k) || :any
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Cyclomatic complexity for scalar_oattr is too high. [10/6] Open
def scalar_oattr(name, options = {})
o, options = {}, options.dup
o[k = :allow_nil] = options.include?(k) ? options.delete(k) : false
o[k = :key] = options.delete(k) || name
o[k = :type] = options.delete(k) || :any
- Read upRead up
- Exclude checks
This cop checks that the cyclomatic complexity of methods is not higher than the configured maximum. The cyclomatic complexity is the number of linearly independent paths through a method. The algorithm counts decision points and adds one.
An if statement (or unless or ?:) increases the complexity by one. An else branch does not, since it doesn't add a decision point. The && operator (or keyword and) can be converted to a nested if statement, and ||/or is shorthand for a sequence of ifs, so they also add one. Loops can be said to have an exit condition, so they add one.
Method scalar_oattr
has 39 lines of code (exceeds 25 allowed). Consider refactoring. Open
def scalar_oattr(name, options = {})
o, options = {}, options.dup
o[k = :allow_nil] = options.include?(k) ? options.delete(k) : false
o[k = :key] = options.delete(k) || name
o[k = :type] = options.delete(k) || :any
Method scalar_oattr
has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring. Open
def scalar_oattr(name, options = {})
o, options = {}, options.dup
o[k = :allow_nil] = options.include?(k) ? options.delete(k) : false
o[k = :key] = options.delete(k) || name
o[k = :type] = options.delete(k) || :any
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method to_h
has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring. Open
def to_h
input = require_attr(:input)
input_location = require_attr(:input_location)
# Validate `input_location` and `input`.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method touch
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def touch
self.class.oattrs.each do |name|
v = public_send(name)
# Touch recursively. Support simple collections.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method credits_info
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
def credits_info
igetset(:credits_info) do
if (body_hash.has_key?(k = "credits_info"))
h = body_hash.fetch(k)
klass = if h.has_key? "monthly_api_usage"
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid parameter lists longer than 5 parameters. [7/5] Open
def jobs_create(auto_parse: false, auto_start: false, filename: nil, remote_input: nil, run_sample: false, supplied_input: nil, historical: nil)
- Read upRead up
- Exclude checks
This cop checks for methods with too many parameters. The maximum number of parameters is configurable. Keyword arguments can optionally be excluded from the total count.
Similar blocks of code found in 2 locations. Consider refactoring. Open
when :float
if o[:allow_nil]
%{
def #{name}
@#{name} ||= unless (v = body_hash.fetch("#{o[:key]}")).nil?
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
when :integer
if o[:allow_nil]
%{
def #{name}
@#{name} ||= unless (v = body_hash.fetch("#{o[:key]}")).nil?
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 31.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Method jobs_create
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def jobs_create(auto_parse: false, auto_start: false, filename: nil, remote_input: nil, run_sample: false, supplied_input: nil, historical: nil)
raise ArgumentError, "`remote_input` and `supplied_input` can't both be given" if remote_input && supplied_input
input_location = if (v = remote_input)
# NOTE: Logical order: type, then value.
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
module NeverBounce; module API; module Request
class JobsDelete < Base
# @return [Integer]
attr_accessor :job_id
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 29.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
module NeverBounce; module API; module Request
class JobsDownload < Base
# @return [Integer]
attr_accessor :job_id
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 29.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76