RemoteSensingFrank/UAVProduct

View on GitHub
UAVProduct/SiftGPU/SiftMatch.cpp

Summary

Maintainability
Test Coverage
////////////////////////////////////////////////////////////////////////////
//    File:        SiftMatch.cpp
//    Author:        Changchang Wu
//    Description :    implementation of SiftMatchGPU and SiftMatchGL
//
//
//    Copyright (c) 2007 University of North Carolina at Chapel Hill
//    All Rights Reserved
//
//    Permission to use, copy, modify and distribute this software and its
//    documentation for educational, research and non-profit purposes, without
//    fee, and without a written agreement is hereby granted, provided that the
//    above copyright notice and the following paragraph appear in all copies.
//    
//    The University of North Carolina at Chapel Hill make no representations
//    about the suitability of this software for any purpose. It is provided
//    'as is' without express or implied warranty. 
//
//    Please send BUG REPORTS to ccwu@cs.unc.edu
//
////////////////////////////////////////////////////////////////////////////

#include "GL/glew.h"
#include <iostream>
#include <iomanip>
#include <vector>
#include <sstream>
#include <algorithm>
using namespace std;
#include <string.h>
#include "GlobalUtil.h"

#include "ProgramGLSL.h"
#include "GLTexImage.h"
#include "SiftGPU.h"
#include "SiftMatch.h"
#include "FrameBufferObject.h"

#if defined(CUDA_SIFTGPU_ENABLED)
#include "CuTexImage.h"
#include "SiftMatchCU.h"
#endif


SiftMatchGL::SiftMatchGL(int max_sift, int use_glsl): SiftMatchGPU()
{
    s_multiply = s_col_max = s_row_max = s_guided_mult = NULL;
    _num_sift[0] = _num_sift[1] = 0;
    _id_sift[0] = _id_sift[1] = 0;
    _have_loc[0] = _have_loc[1] = 0;
    _max_sift = max_sift <=0 ? 4096 : ((max_sift + 31)/ 32 * 32) ; 
    _pixel_per_sift = 32; //must be 32
    _sift_num_stripe = 1; 
    _sift_per_stripe = 1;
    _sift_per_row = _sift_per_stripe * _sift_num_stripe;
    _initialized = 0;
}

SiftMatchGL::~SiftMatchGL()
{
    if(s_multiply) delete s_multiply;
    if(s_guided_mult) delete s_guided_mult;
    if(s_col_max) delete s_col_max;
    if(s_row_max) delete s_row_max;
}

void SiftMatchGL::SetMaxSift(int max_sift)
{
    
    max_sift = ((max_sift + 31)/32)*32;
    if(max_sift > GlobalUtil::_texMaxDimGL) max_sift = GlobalUtil::_texMaxDimGL;
    if(max_sift > _max_sift)
    {
        _max_sift = max_sift;
        AllocateSiftMatch();
        _have_loc[0] = _have_loc[1] = 0;
        _id_sift[0] = _id_sift[1] = -1;
        _num_sift[0] = _num_sift[1] = 1;
    }else
    {
        _max_sift = max_sift;
    }

}

void SiftMatchGL::AllocateSiftMatch()
{
    //parameters, number of sift is limited by the texture size
    if(_max_sift > GlobalUtil::_texMaxDimGL) _max_sift = GlobalUtil::_texMaxDimGL;    
    ///
    int h = _max_sift / _sift_per_row; 
    int n = (GlobalUtil::_texMaxDimGL + h - 1) / GlobalUtil::_texMaxDimGL; 
    if ( n > 1) {_sift_num_stripe *= n; _sift_per_row *= n; }

    //initialize

    _texDes[0].InitTexture(_sift_per_row * _pixel_per_sift, _max_sift / _sift_per_row, 0,GL_RGBA8);
    _texDes[1].InitTexture(_sift_per_row * _pixel_per_sift, _max_sift / _sift_per_row, 0, GL_RGBA8);
    _texLoc[0].InitTexture(_sift_per_row , _max_sift / _sift_per_row, 0);
    _texLoc[1].InitTexture(_sift_per_row , _max_sift / _sift_per_row, 0);

    if(GlobalUtil::_SupportNVFloat || GlobalUtil::_SupportTextureRG)
    {
        //use single-component texture to save memory
#ifndef GL_R32F
#define GL_R32F 0x822E
#endif
        GLuint format = GlobalUtil::_SupportNVFloat ? GL_FLOAT_R_NV : GL_R32F;
        _texDot.InitTexture(_max_sift, _max_sift, 0, format);
        _texMatch[0].InitTexture(16, _max_sift / 16, 0, format);
        _texMatch[1].InitTexture(16, _max_sift / 16, 0, format);
    }else
    {
        _texDot.InitTexture(_max_sift, _max_sift, 0);
        _texMatch[0].InitTexture(16, _max_sift / 16, 0);
        _texMatch[1].InitTexture(16, _max_sift / 16, 0);
    }

}
void SiftMatchGL::InitSiftMatch()
{
    if(_initialized) return;
    GlobalUtil::InitGLParam(0);
    if(GlobalUtil::_GoodOpenGL == 0) return;
    AllocateSiftMatch();
    LoadSiftMatchShadersGLSL();
    _initialized = 1; 
}


void SiftMatchGL::SetDescriptors(int index, int num, const unsigned char* descriptors, int id)
{    
    if(_initialized == 0) return;
    if (index > 1) index = 1;
    if (index < 0) index = 0;
    _have_loc[index] = 0;

    //the same feature is already set
    if(id !=-1 && id == _id_sift[index]) return ;
    _id_sift[index] = id;

    if(num > _max_sift) num = _max_sift;

    sift_buffer.resize(num * 128 /4);
    memcpy(&sift_buffer[0], descriptors, 128 * num);
    _num_sift[index] = num; 
    int w = _sift_per_row * _pixel_per_sift;
    int h = (num + _sift_per_row  - 1)/ _sift_per_row; 
    sift_buffer.resize(w * h * 4, 0);
    _texDes[index].SetImageSize(w , h);
    _texDes[index].BindTex(); 
    if(_sift_num_stripe == 1)
    {
        glTexSubImage2D(GlobalUtil::_texTarget, 0, 0, 0, w, h, GL_RGBA,  GL_UNSIGNED_BYTE, &sift_buffer[0]);
    }else
    {
        for(int i = 0; i < _sift_num_stripe; ++i)
        {
            int ws = _sift_per_stripe * _pixel_per_sift;
            int x = i * ws;
            int pos = i * ws * h * 4; 
            glTexSubImage2D(GlobalUtil::_texTarget, 0, x, 0, ws, h, GL_RGBA, GL_UNSIGNED_BYTE, &sift_buffer[pos]);
        }
    }
    _texDes[index].UnbindTex();

}

void SiftMatchGL::SetFeautreLocation(int index, const float* locations, int gap)
{
    if(_num_sift[index] <=0) return;
    int w = _sift_per_row ;
    int h = (_num_sift[index] + _sift_per_row  - 1)/ _sift_per_row; 
    sift_buffer.resize(_num_sift[index] * 2);
    if(gap == 0)
    {
        memcpy(&sift_buffer[0], locations, _num_sift[index] * 2 * sizeof(float));
    }else
    {
        for(int i = 0; i < _num_sift[index]; ++i)
        {
            sift_buffer[i*2] = *locations++;
            sift_buffer[i*2+1]= *locations ++;
            locations += gap;
        }
    }
    sift_buffer.resize(w * h * 2, 0);
    _texLoc[index].SetImageSize(w , h);
    _texLoc[index].BindTex(); 
    if(_sift_num_stripe == 1)
    {
        glTexSubImage2D(GlobalUtil::_texTarget, 0, 0, 0, w, h, GL_LUMINANCE_ALPHA , GL_FLOAT , &sift_buffer[0]);
    }else
    {
        for(int i = 0; i < _sift_num_stripe; ++i)
        {
            int ws = _sift_per_stripe;
            int x = i * ws;
            int pos = i * ws * h * 2; 
            glTexSubImage2D(GlobalUtil::_texTarget, 0, x, 0, ws, h, GL_LUMINANCE_ALPHA , GL_FLOAT, &sift_buffer[pos]);
        }
    }
    _texLoc[index].UnbindTex();
    _have_loc[index] = 1;
}

void SiftMatchGL::SetDescriptors(int index, int num, const float* descriptors, int id)
{    
    if(_initialized == 0) return;
    if (index > 1) index = 1;
    if (index < 0) index = 0;
    _have_loc[index] = 0;

    //the same feature is already set
    if(id !=-1 && id == _id_sift[index]) return ;
    _id_sift[index] = id; 

    if(num > _max_sift) num = _max_sift;

    sift_buffer.resize(num * 128 /4);
    unsigned char * pub = (unsigned char*) &sift_buffer[0];
    for(int i = 0; i < 128 * num; ++i)
    {
        pub[i] = int(512 * descriptors[i] + 0.5);
    }
    _num_sift[index] = num; 
    int w = _sift_per_row * _pixel_per_sift;
    int h = (num + _sift_per_row  - 1)/ _sift_per_row; 
    sift_buffer.resize(w * h * 4, 0);
    _texDes[index].SetImageSize(w, h);
    _texDes[index].BindTex();
    if(_sift_num_stripe == 1)
    {
        glTexSubImage2D(GlobalUtil::_texTarget, 0, 0, 0, w, h, GL_RGBA,  GL_UNSIGNED_BYTE, &sift_buffer[0]);
    }else
    {
        for(int i = 0; i < _sift_num_stripe; ++i)
        {
            int ws = _sift_per_stripe * _pixel_per_sift;
            int x = i * ws;
            int pos = i * ws * h * 4; 
            glTexSubImage2D(GlobalUtil::_texTarget, 0, x, 0, ws, h, GL_RGBA, GL_UNSIGNED_BYTE, &sift_buffer[pos]);
        }
    }
    _texDes[index].UnbindTex();
}


void SiftMatchGL::LoadSiftMatchShadersGLSL()
{
    ProgramGLSL * program;
    ostringstream out;
    if(GlobalUtil::_IsNvidia)
    out <<  "#pragma optionNV(ifcvt none)\n"
            "#pragma optionNV(unroll all)\n";

    out <<  "#define SIFT_PER_STRIPE " << _sift_per_stripe << ".0\n" 
            "#define PIXEL_PER_SIFT " << _pixel_per_sift << "\n"
            "uniform sampler2DRect tex1, tex2; uniform vec2    size;\n"
            "void main()        \n"
            "{\n"
        <<    "   vec4 val = vec4(0.0, 0.0, 0.0, 0.0), data1, buf;\n"
            "   vec2 index = gl_FragCoord.yx; \n"
            "   vec2 stripe_size = size.xy * SIFT_PER_STRIPE;\n"
            "    vec2 temp_div1 = index / stripe_size;\n"
            "   vec2 stripe_index = floor(temp_div1);\n"
            "   index = floor(stripe_size * (temp_div1 - stripe_index));\n"
            "    vec2 temp_div2 = index * vec2(1.0 / float(SIFT_PER_STRIPE));\n"
            "    vec2 temp_floor2 = floor(temp_div2);\n"
            "   vec2 index_v = temp_floor2 + vec2(0.5);\n "
            "   vec2 index_h = vec2(SIFT_PER_STRIPE)* (temp_div2 - temp_floor2);\n"
            "   vec2 tx = (index_h + stripe_index * vec2(SIFT_PER_STRIPE))* vec2(PIXEL_PER_SIFT) + 0.5;\n"
            "   vec2 tpos1, tpos2; \n"
            "    vec4 tpos = vec4(tx, index_v);\n"
            //////////////////////////////////////////////////////
            "   for(int i = 0; i < PIXEL_PER_SIFT; ++i){\n"
            "        buf = texture2DRect(tex2, tpos.yw);\n"
            "        data1 = texture2DRect(tex1, tpos.xz);\n"
            "        val += (data1 * buf);\n"
            "        tpos.xy = tpos.xy + vec2(1.0, 1.0);\n"
            "    }\n"
            "    const float factor = 0.248050689697265625; \n"
            "    gl_FragColor =vec4(dot(val, vec4(factor)), index,  0);\n"
            "}"
        <<    '\0';

    s_multiply = program= new ProgramGLSL(out.str().c_str()); 

    _param_multiply_tex1 = glGetUniformLocation(*program, "tex1");
    _param_multiply_tex2 = glGetUniformLocation(*program, "tex2");
    _param_multiply_size = glGetUniformLocation(*program, "size");

    out.seekp(ios::beg);
    if(GlobalUtil::_IsNvidia)
    out <<  "#pragma optionNV(ifcvt none)\n"
            "#pragma optionNV(unroll all)\n";

    out <<  "#define SIFT_PER_STRIPE " << _sift_per_stripe << ".0\n" 
            "#define PIXEL_PER_SIFT " << _pixel_per_sift << "\n"
            "uniform sampler2DRect tex1, tex2;\n"
            "uniform sampler2DRect texL1;\n"
            "uniform sampler2DRect texL2; \n"
            "uniform mat3 H; \n"
            "uniform mat3 F; \n"
            "uniform vec4    size; \n"
            "void main()        \n"
            "{\n"
        <<    "   vec4 val = vec4(0.0, 0.0, 0.0, 0.0), data1, buf;\n"
            "   vec2 index = gl_FragCoord.yx; \n"
            "   vec2 stripe_size = size.xy * SIFT_PER_STRIPE;\n"
            "    vec2 temp_div1 = index / stripe_size;\n"
            "   vec2 stripe_index = floor(temp_div1);\n"
            "   index = floor(stripe_size * (temp_div1 - stripe_index));\n"
            "    vec2 temp_div2 = index  * vec2(1.0/ float(SIFT_PER_STRIPE));\n"
            "    vec2 temp_floor2 = floor(temp_div2);\n"
            "   vec2 index_v = temp_floor2 + vec2(0.5);\n "
            "   vec2 index_h = vec2(SIFT_PER_STRIPE)* (temp_div2 - temp_floor2);\n"
            
            //read feature location data
            "   vec4 tlpos = vec4((index_h + stripe_index * vec2(SIFT_PER_STRIPE)) + 0.5, index_v);\n"
            "   vec3 loc1 = vec3(texture2DRect(texL1, tlpos.xz).xw, 1.0);\n"
            "   vec3 loc2 = vec3(texture2DRect(texL2, tlpos.yw).xw, 1.0);\n"
            
            //check the guiding homography
            "   vec3 hxloc1 = H* loc1;\n"
            "   vec2 diff = abs(loc2.xy- (hxloc1.xy/hxloc1.z));\n"
            "   float disth = max(diff.x, diff.y);\n"
            "   if(disth > size.z ) {gl_FragColor = vec4(0.0, index, 0.0); return;}\n"

            //check the guiding fundamental 
            "   vec3 fx1 = (F * loc1), ftx2 = (loc2 * F);\n"
            "   float x2tfx1 = dot(loc2, fx1);\n"
            "   vec4 temp = vec4(fx1.xy, ftx2.xy); \n"
            "   float sampson_error = (x2tfx1 * x2tfx1) / dot(temp, temp);\n"
            "   if(sampson_error > size.w) {gl_FragColor = vec4(0.0, index, 0.0); return;}\n"

            //compare feature descriptor
            "   vec2 tx = (index_h + stripe_index * SIFT_PER_STRIPE)* vec2(PIXEL_PER_SIFT) + 0.5;\n"
            "   vec2 tpos1, tpos2; \n"
            "    vec4 tpos = vec4(tx, index_v);\n"
            "   for(int i = 0; i < PIXEL_PER_SIFT; ++i){\n"
            "        buf = texture2DRect(tex2, tpos.yw);\n"
            "        data1 = texture2DRect(tex1, tpos.xz);\n"
            "        val += data1 * buf;\n"
            "        tpos.xy = tpos.xy + vec2(1.0, 1.0);\n"
            "    }\n"
            "    const float factor = 0.248050689697265625; \n"
            "    gl_FragColor =vec4(dot(val, vec4(factor)), index,  0.0);\n"
            "}"
        <<    '\0';

    s_guided_mult = program= new ProgramGLSL(out.str().c_str());

    _param_guided_mult_tex1 = glGetUniformLocation(*program, "tex1");
    _param_guided_mult_tex2= glGetUniformLocation(*program, "tex2");
    _param_guided_mult_texl1 = glGetUniformLocation(*program, "texL1");
    _param_guided_mult_texl2 = glGetUniformLocation(*program, "texL2");
    _param_guided_mult_h = glGetUniformLocation(*program, "H");
    _param_guided_mult_f = glGetUniformLocation(*program, "F");
    _param_guided_mult_param = glGetUniformLocation(*program, "size");

    //row max
    out.seekp(ios::beg);
    out <<    "#define BLOCK_WIDTH 16.0\n"
            "uniform sampler2DRect tex;    uniform vec3 param;\n"
            "void main ()\n"
            "{\n"
            "    float index = gl_FragCoord.x + floor(gl_FragCoord.y) * BLOCK_WIDTH; \n"
            "    vec2 bestv = vec2(-1.0); float imax = -1.0;\n"
            "    for(float i = 0.0; i < param.x; i ++){\n "
            "        float v = texture2DRect(tex, vec2(i + 0.5, index)).r; \n"
            "        imax = v > bestv.r ? i : imax; \n "
            "        bestv  = v > bestv.r? vec2(v, bestv.r) : max(bestv, vec2(v));\n "
            "    }\n"
            "    bestv = acos(min(bestv, 1.0));\n"
            "    if(bestv.x >= param.y || bestv.x >= param.z * bestv.y) imax = -1.0;\n"
            "    gl_FragColor = vec4(imax, bestv, index);\n"
            "}"
        <<  '\0';
    s_row_max = program= new ProgramGLSL(out.str().c_str()); 
    _param_rowmax_param = glGetUniformLocation(*program, "param");

    out.seekp(ios::beg);
    out <<    "#define BLOCK_WIDTH 16.0\n"
            "uniform sampler2DRect tex; uniform vec3 param;\n"
            "void main ()\n"
            "{\n"
            "    float index = gl_FragCoord.x + floor(gl_FragCoord.y) * BLOCK_WIDTH; \n"
            "    vec2 bestv = vec2(-1.0); float imax = -1.0;\n"
            "    for(float i = 0.0; i < param.x; i ++){\n "
            "        float v = texture2DRect(tex, vec2(index, i + 0.5)).r; \n"
            "        imax = (v > bestv.r)? i : imax; \n "
            "        bestv  = v > bestv.r? vec2(v, bestv.r) : max(bestv, vec2(v));\n "
            "    }\n"
            "    bestv = acos(min(bestv, 1.0));\n"
            "    if(bestv.x >= param.y || bestv.x >= param.z * bestv.y) imax = -1.0;\n"
            "    gl_FragColor = vec4(imax, bestv, index);\n"
            "}"
        <<  '\0';
    s_col_max = program =new ProgramGLSL(out.str().c_str()); 
    _param_colmax_param = glGetUniformLocation(*program, "param");


}

int  SiftMatchGL::GetGuidedSiftMatch(int max_match, int match_buffer[][2], float H[3][3], float F[3][3],
                                     float distmax, float ratiomax, float hdistmax, float fdistmax, int mbm)
{

    int dw = _num_sift[1];
    int dh = _num_sift[0]; 
    if(_initialized ==0) return 0;
    if(dw <= 0 || dh <=0) return 0;
    if(_have_loc[0] == 0 || _have_loc[1] == 0) return 0;

    FrameBufferObject fbo;
    glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
    _texDot.SetImageSize(dw, dh);


    //data
    _texDot.AttachToFBO(0);
    _texDot.FitTexViewPort();
    glActiveTexture(GL_TEXTURE0);
    _texDes[0].BindTex();
    glActiveTexture(GL_TEXTURE1);
    _texDes[1].BindTex();
    glActiveTexture(GL_TEXTURE2);
    _texLoc[0].BindTex();
    glActiveTexture(GL_TEXTURE3);
    _texLoc[1].BindTex();

    //multiply the descriptor matrices
    s_guided_mult->UseProgram();


    //set parameters glsl
    float dot_param[4] = {(float)_texDes[0].GetDrawHeight(), (float) _texDes[1].GetDrawHeight(), hdistmax, fdistmax};
    glUniform1i(_param_guided_mult_tex1, 0);
    glUniform1i(_param_guided_mult_tex2, 1);
    glUniform1i(_param_guided_mult_texl1, 2);
    glUniform1i(_param_guided_mult_texl2, 3);
    glUniformMatrix3fv(_param_guided_mult_h, 1, GL_TRUE, H[0]);
    glUniformMatrix3fv(_param_guided_mult_f, 1, GL_TRUE, F[0]);
    glUniform4fv(_param_guided_mult_param, 1, dot_param);

    _texDot.DrawQuad();

    GLTexImage::UnbindMultiTex(4);

    return GetBestMatch(max_match, match_buffer, distmax, ratiomax, mbm);
}

int SiftMatchGL::GetBestMatch(int max_match, int match_buffer[][2], float distmax, float ratiomax, int mbm)
{

    glActiveTexture(GL_TEXTURE0);
    _texDot.BindTex();

    //readback buffer
    sift_buffer.resize(_num_sift[0] + _num_sift[1] + 16);
    float * buffer1 = &sift_buffer[0], * buffer2 = &sift_buffer[_num_sift[0]];

    //row max
    _texMatch[0].AttachToFBO(0);
    _texMatch[0].SetImageSize(16, ( _num_sift[0] + 15) / 16);
    _texMatch[0].FitTexViewPort();

    ///set parameter glsl
    s_row_max->UseProgram();
    glUniform3f(_param_rowmax_param, (float)_num_sift[1], distmax, ratiomax);

    _texMatch[0].DrawQuad();
    glReadPixels(0, 0, 16, (_num_sift[0] + 15)/16, GL_RED, GL_FLOAT, buffer1);

    //col max
    if(mbm)
    {
        _texMatch[1].AttachToFBO(0);
        _texMatch[1].SetImageSize(16, (_num_sift[1] + 15) / 16);
        _texMatch[1].FitTexViewPort();
        //set parameter glsl
        s_col_max->UseProgram();
        glUniform3f(_param_rowmax_param, (float)_num_sift[0], distmax, ratiomax);
        _texMatch[1].DrawQuad();
        glReadPixels(0, 0, 16, (_num_sift[1] + 15) / 16, GL_RED, GL_FLOAT, buffer2);
    }


    //unload
    glUseProgram(0);

    GLTexImage::UnbindMultiTex(2);
    GlobalUtil::CleanupOpenGL();

    //write back the matches
    int nmatch = 0, j ;
    for(int i = 0; i < _num_sift[0] && nmatch < max_match; ++i)
    {
        j = int(buffer1[i]);
        if( j>= 0 && (!mbm ||int(buffer2[j]) == i))
        {
            match_buffer[nmatch][0] = i;
            match_buffer[nmatch][1] = j;
            nmatch++;
        }
    }
    return nmatch;
}

int  SiftMatchGL::GetSiftMatch(int max_match, int match_buffer[][2], float distmax, float ratiomax, int mbm)
{
    int dw = _num_sift[1];
    int dh =  _num_sift[0]; 
    if(_initialized ==0) return 0;
    if(dw <= 0 || dh <=0) return 0;

    FrameBufferObject fbo;
    glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
    _texDot.SetImageSize(dw, dh);

    //data
    _texDot.AttachToFBO(0);
    _texDot.FitTexViewPort();
    glActiveTexture(GL_TEXTURE0);
    _texDes[0].BindTex();
    glActiveTexture(GL_TEXTURE1);
    _texDes[1].BindTex();

    //////////////////    
    //multiply the descriptor matrices
    s_multiply->UseProgram();
    //set parameters
    float heights[2] = {(float)_texDes[0].GetDrawHeight(), (float)_texDes[1].GetDrawHeight()};

    glUniform1i(_param_multiply_tex1, 0);
    glUniform1i(_param_multiply_tex2 , 1);
    glUniform2fv(_param_multiply_size, 1, heights);

    _texDot.DrawQuad();

    glActiveTexture(GL_TEXTURE1);
    glBindTexture(GlobalUtil::_texTarget, 0);

    return GetBestMatch(max_match, match_buffer, distmax, ratiomax, mbm);
}


int SiftMatchGPU::_CreateContextGL()
{
    //Create an OpenGL Context?
    if (__language >= SIFTMATCH_CUDA) {}
    else if(!GlobalUtil::CreateWindowEZ())
    {
#if CUDA_SIFTGPU_ENABLED
        __language = SIFTMATCH_CUDA;
#else
        return 0;
#endif
    }
    return VerifyContextGL();
}


int SiftMatchGPU::_VerifyContextGL()
{
    if(__matcher) return GlobalUtil::_GoodOpenGL;
    
#ifdef CUDA_SIFTGPU_ENABLED

    if(__language >= SIFTMATCH_CUDA) {}
    else if(__language == SIFTMATCH_SAME_AS_SIFTGPU && GlobalUtil::_UseCUDA){}
    else  GlobalUtil::InitGLParam(0); 
    if(GlobalUtil::_GoodOpenGL == 0) __language = SIFTMATCH_CUDA;

    if(((__language == SIFTMATCH_SAME_AS_SIFTGPU && GlobalUtil::_UseCUDA) || __language >= SIFTMATCH_CUDA) 
        && SiftMatchCU::CheckCudaDevice (GlobalUtil::_DeviceIndex))
    {
        __language = SIFTMATCH_CUDA;
        __matcher = new SiftMatchCU(__max_sift);
    }else
#else
    if((__language == SIFTMATCH_SAME_AS_SIFTGPU && GlobalUtil::_UseCUDA) || __language >= SIFTMATCH_CUDA) 
    {
        std::cerr    << "---------------------------------------------------------------------------\n"
                    << "CUDA not supported in this binary! To enable it, please use SiftGPU_CUDA_Enable\n" 
                    << "Project for VS2005+ or set siftgpu_enable_cuda to 1 in makefile\n"
                    << "----------------------------------------------------------------------------\n";
    }
#endif
    {
        __language = SIFTMATCH_GLSL;
        __matcher = new SiftMatchGL(__max_sift, 1);
    }

    if(GlobalUtil::_verbose)
        std::cout   << "[SiftMatchGPU]: " << (__language == SIFTMATCH_CUDA? "CUDA" : "GLSL") <<"\n\n";

    __matcher->InitSiftMatch();
    return GlobalUtil::_GoodOpenGL;
}

void* SiftMatchGPU::operator new (size_t  size){
  void * p = malloc(size);
  if (p == 0)  
  {
      const std::bad_alloc ba;
      throw ba; 
  }
  return p; 
}


SiftMatchGPU::SiftMatchGPU(int max_sift)
{
    __max_sift = max(max_sift, 1024);
    __language = 0;
    __matcher = NULL;
}

void SiftMatchGPU::SetLanguage(int language)
{
    if(__matcher) return;
    ////////////////////////
#ifdef CUDA_SIFTGPU_ENABLED
    if(language >= SIFTMATCH_CUDA) GlobalUtil::_DeviceIndex = language - SIFTMATCH_CUDA; 
#endif
    __language = language > SIFTMATCH_CUDA ? SIFTMATCH_CUDA : language;
}

void SiftMatchGPU::SetDeviceParam(int argc, char**argv)
{
    if(__matcher) return;
    GlobalUtil::SetDeviceParam(argc, argv);
}

void SiftMatchGPU::SetMaxSift(int max_sift)
{
    if(__matcher)    __matcher->SetMaxSift(max(128, max_sift));
    else __max_sift = max(128, max_sift);
}

SiftMatchGPU::~SiftMatchGPU()
{
    if(__matcher) delete __matcher;
}

void SiftMatchGPU::SetDescriptors(int index, int num, const unsigned char* descriptors, int id)
{
    __matcher->SetDescriptors(index, num,  descriptors, id);
}

void SiftMatchGPU::SetDescriptors(int index, int num, const float* descriptors, int id)
{
    __matcher->SetDescriptors(index, num, descriptors, id);
}

void SiftMatchGPU::SetFeautreLocation(int index, const float* locations, int gap)
{
    __matcher->SetFeautreLocation(index, locations, gap);

}
int  SiftMatchGPU::GetGuidedSiftMatch(int max_match, int match_buffer[][2], float H[3][3], float F[3][3], 
                float distmax, float ratiomax, float hdistmax, float fdistmax, int mutual_best_match)
{
    if(H == NULL && F == NULL)
    {
        return __matcher->GetSiftMatch(max_match, match_buffer, distmax, ratiomax, mutual_best_match);
    }else
    {
        float Z[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, ti = (1.0e+20F);

        return __matcher->GetGuidedSiftMatch(max_match, match_buffer, H? H : Z, F? F : Z,
            distmax, ratiomax, H? hdistmax: ti,  F? fdistmax: ti, mutual_best_match);
    }
}

int  SiftMatchGPU::GetSiftMatch(int max_match, int match_buffer[][2], float distmax, float ratiomax, int mutual_best_match)
{
    return __matcher->GetSiftMatch(max_match, match_buffer, distmax, ratiomax, mutual_best_match);
}

SiftMatchGPU* CreateNewSiftMatchGPU(int max_sift)
{
    return new SiftMatchGPU(max_sift);
}