SiLeBAT/FSK-Lab

View on GitHub
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java

Summary

Maintainability
F
6 days
Test Coverage

File JoinerNodeModel.java has 551 lines of code (exceeds 250 allowed). Consider refactoring.
Open

/*
 ***************************************************************************************************
 * Copyright (c) 2017 Federal Institute for Risk Assessment (BfR), Germany
 *
 * This program is free software: you can redistribute it and/or modify it under the terms of the

Method loadJsonSetting has a Cognitive Complexity of 43 (exceeds 5 allowed). Consider refactoring.
Open

  protected void loadJsonSetting() throws IOException, CanceledExecutionException, ParseException {

    File directory =
        NodeContext.getContext().getWorkflowManager().getContext().getCurrentLocation();
    File settingFolder = new File(buildContainerName());

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Method loadJsonSetting has 120 lines of code (exceeds 25 allowed). Consider refactoring.
Open

  protected void loadJsonSetting() throws IOException, CanceledExecutionException, ParseException {

    File directory =
        NodeContext.getContext().getWorkflowManager().getContext().getCurrentLocation();
    File settingFolder = new File(buildContainerName());

Method getViewRepresentation has a Cognitive Complexity of 30 (exceeds 5 allowed). Consider refactoring.
Open

  @Override
  public JoinerViewRepresentation getViewRepresentation() {

    JoinerViewRepresentation representation;

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

JoinerNodeModel has 32 methods (exceeds 20 allowed). Consider refactoring.
Open

public final class JoinerNodeModel
    extends AbstractSVGWizardNodeModel<JoinerViewRepresentation, JoinerViewValue>
    implements PortObjectHolder {
    
  private final JoinerNodeSettings nodeSettings = new JoinerNodeSettings();

Method saveSettingsTo has a Cognitive Complexity of 21 (exceeds 5 allowed). Consider refactoring.
Open

  @Override
  protected void saveSettingsTo(NodeSettingsWO settings) {

    File directory =
        NodeContext.getContext().getWorkflowManager().getContext().getCurrentLocation();

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Method saveSettingsTo has 53 lines of code (exceeds 25 allowed). Consider refactoring.
Open

  @Override
  protected void saveSettingsTo(NodeSettingsWO settings) {

    File directory =
        NodeContext.getContext().getWorkflowManager().getContext().getCurrentLocation();

Method getViewRepresentation has 50 lines of code (exceeds 25 allowed). Consider refactoring.
Open

  @Override
  public JoinerViewRepresentation getViewRepresentation() {

    JoinerViewRepresentation representation;

Method performExecuteCreatePortObjects has 46 lines of code (exceeds 25 allowed). Consider refactoring.
Open

  @Override
  protected PortObject[] performExecuteCreatePortObjects(PortObject svgImageFromView,
      PortObject[] inObjects, ExecutionContext exec) throws Exception {

    CombinedFskPortObject outObj = new CombinedFskPortObject(Optional.empty(), new ArrayList<>(),

Method performExecuteCreatePortObjects has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring.
Open

  @Override
  protected PortObject[] performExecuteCreatePortObjects(PortObject svgImageFromView,
      PortObject[] inObjects, ExecutionContext exec) throws Exception {

    CombinedFskPortObject outObj = new CombinedFskPortObject(Optional.empty(), new ArrayList<>(),

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Method setScriptBack has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

  private void setScriptBack(FskPortObject fskObject1, FskPortObject fskObject2,
      JsonArray scriptTree) {

    JsonObject obj1 = scriptTree.getJsonObject(0);
    if (obj1.containsKey("script")) {

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Refactor this method to reduce its Cognitive Complexity from 29 to the 15 allowed.
Open

  public JoinerViewRepresentation getViewRepresentation() {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Refactor this method to reduce its Cognitive Complexity from 43 to the 15 allowed.
Open

  protected void loadJsonSetting() throws IOException, CanceledExecutionException, ParseException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Refactor this method to reduce its Cognitive Complexity from 21 to the 15 allowed.
Open

  protected void saveSettingsTo(NodeSettingsWO settings) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Define a constant instead of duplicating this literal "JoinRelations.json" 4 times.
Open

    if (flowVariables.containsKey("JoinRelations.json")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "nodes" 3 times.
Open

          firstCombinedModel.getSecondFskPortObject(), obj1.getJsonArray("nodes"));

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "modelMetaData.json" 4 times.
Open

    if (flowVariables.containsKey("modelMetaData.json")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "firstModelParameters.json" 4 times.
Open

    if (flowVariables.containsKey("firstModelParameters.json")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "secondModelParameters.json" 4 times.
Open

    if (flowVariables.containsKey("secondModelParameters.json")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "script" 7 times.
Open

    if (obj1.containsKey("script")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "sourceTree.json" 4 times.
Open

    if (flowVariables.containsKey("sourceTree.json")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "visualization.txt" 4 times.
Open

    if (flowVariables.containsKey("visualization.txt")) {

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

  protected void useCurrentValueAsDefault() {}

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

  public void saveCurrentValue(NodeSettingsWO content) {}

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

  public void setHideInWizard(boolean hide) {}

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Add a nested comment explaining why this method is empty, throw an UnsupportedOperationException or complete the implementation.
Open

  protected void validateSettings(NodeSettingsRO settings) throws InvalidSettingsException {}

There are several reasons for a method not to have a method body:

  • It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
  • It is not yet, or never will be, supported. In this case an UnsupportedOperationException should be thrown.
  • The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

public void doSomething() {
}

public void doSomethingElse() {
}

Compliant Solution

@Override
public void doSomething() {
  // Do nothing because of X and Y.
}

@Override
public void doSomethingElse() {
  throw new UnsupportedOperationException();
}

Exceptions

Default (no-argument) constructors are ignored when there are other constructors in the class, as are empty methods in abstract classes.

public abstract class Animal {
  void speak() {  // default implementation ignored
  }
}

Identical blocks of code found in 2 locations. Consider refactoring.
Open

  private String buildModelscriptAsTree() {

    JsonArrayBuilder array = Json.createArrayBuilder();
    array.add(getModelScriptNode(firstInputPort).build());

de.bund.bfr.knime.fsklab.deprecatednodes/src-1_7_2/de/bund/bfr/knime/fsklab/nodes/v1_7_2/joiner/JoinerNodeModel.java on lines 432..443

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 107.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 4 locations. Consider refactoring.
Open

    if (flowVariables.containsKey("visualization.txt")) {
      visualizationScript = flowVariables.get("visualization.txt").getStringValue();
    } else {
      File configFile = new File(settingFolder, "visualization.txt");
      if (configFile.exists()) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 418..427
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 402..411
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 414..423

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 72.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 4 locations. Consider refactoring.
Open

    if (flowVariables.containsKey("sourceTree.json")) {
      sourceTree = flowVariables.get("sourceTree.json").getStringValue();
    } else {
      File configFile = new File(settingFolder, "sourceTree.json");
      if (configFile.exists()) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 430..439
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 402..411
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 414..423

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 72.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

      if (representation.getSecondModelParameters() == null && secondInputPort != null) {
        List<Parameter> secondModelParams = SwaggerUtil.getParameter(secondInputPort.modelMetadata);
        if (secondModelParams != null && !secondModelParams.isEmpty()) {
          representation.setSecondModelParameters(
              secondModelParams.toArray(new Parameter[secondModelParams.size()]));
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 163..169

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 70.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

      if (representation.getFirstModelParameters() == null && firstInputPort != null) {
        List<Parameter> firstModelParams = SwaggerUtil.getParameter(firstInputPort.modelMetadata);
        if (firstModelParams != null && !firstModelParams.isEmpty()) {
          representation.setFirstModelParameters(
              firstModelParams.toArray(new Parameter[firstModelParams.size()]));
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 172..178

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 70.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    if (flowVariables.containsKey("modelMetaData.json")) {
      nodeSettings.modelMetaData = flowVariables.get("modelMetaData.json").getStringValue();
    } else {
      File configFile = new File(settingFolder, "modelMetaData.json");
      if (configFile.exists()) {
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 368..375

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 66.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    if (obj1.containsKey("script")) {
      fskObject1.setModel(obj1.getString("script"));
    } else {
      CombinedFskPortObject firstCombinedModel = (CombinedFskPortObject) fskObject1;
      setScriptBack(firstCombinedModel.getFirstFskPortObject(),
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 258..264

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    if (obj2.containsKey("script")) {
      fskObject2.setModel(obj2.getString("script"));
    } else {
      CombinedFskPortObject secondCombinedModel = (CombinedFskPortObject) fskObject2;
      setScriptBack(secondCombinedModel.getFirstFskPortObject(),
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 249..255

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    if (StringUtils.isNotEmpty(viewValue.modelScriptTree)) {
      File configFile = new File(settingsFolder, "sourceTree.json");
      try {
        FileUtils.writeStringToFile(configFile, viewValue.modelScriptTree, StandardCharsets.UTF_8);
      } catch (IOException e) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 501..508

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 48.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    if (StringUtils.isNotEmpty(viewValue.modelMetaData)) {
      File configFile = new File(settingsFolder, "modelMetaData.json");
      try {
        FileUtils.writeStringToFile(configFile, viewValue.modelMetaData, StandardCharsets.UTF_8);
      } catch (IOException e) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 528..535

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 48.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 3 locations. Consider refactoring.
Open

  @Override
  public JoinerViewValue getViewValue() {
    JoinerViewValue val;
    synchronized (getLock()) {
      val = super.getViewValue();
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_7_2/de/bund/bfr/knime/fsklab/nodes/v1_7_2/editor/FSKEditorJSNodeModel.java on lines 175..186
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_7_2/de/bund/bfr/knime/fsklab/nodes/v1_7_2/joiner/JoinerNodeModel.java on lines 141..152

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 47.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

    if (NodeContext.getContext().getNodeContainer().getFlowObjectStack() != null) {
      flowVariables = NodeContext.getContext().getNodeContainer().getFlowObjectStack()
          .getAvailableFlowVariables();
    } else {
      flowVariables = Collections.emptyMap();
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 351..356

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 44.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Identical blocks of code found in 2 locations. Consider refactoring.
Open

      if (value.joinRelations != null) {
        connections = value.joinRelations;
      } else if (nodeSettings.connections != null) {
        connections = nodeSettings.connections;
      }
de.bund.bfr.knime.fsklab.nodes/src/de/bund/bfr/knime/fsklab/v2_0/joiner/JoinerNodeModel.java on lines 658..662

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 44.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    if (ArrayUtils.isNotEmpty(representation.getFirstModelParameters())) {
      File configFile = new File(settingsFolder, "firstModelParameters.json");
      try {
        MAPPER.writeValue(configFile, representation.getFirstModelParameters());
      } catch (IOException e) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 519..526

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 44.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    if (ArrayUtils.isNotEmpty(representation.getSecondModelParameters())) {
      File configFile = new File(settingsFolder, "secondModelParameters.json");
      try {
        MAPPER.writeValue(configFile, representation.getSecondModelParameters());
      } catch (IOException e) {
de.bund.bfr.knime.fsklab.deprecatednodes/src-1_9_0/de/bund/bfr/knime/fsklab/v1_9/joiner/JoinerNodeModel.java on lines 510..517

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 44.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

There are no issues that match your filters.

Category
Status