Smile-SA/elasticsuite

View on GitHub

Showing 1,375 of 1,375 total issues

Function execute has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    protected function execute(InputInterface $input, OutputInterface $output)
    {
        $progressIndicator = new ProgressIndicator($output, 'verbose', 100, ['⠏', '⠛', '⠹', '⢸', '⣰', '⣤', '⣆', '⡇']);
        $progressIndicator->start('Processing...');

Severity: Minor
Found in src/module-elasticsuite-tracker/Console/CheckData.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function decodeCategoryUid has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function decodeCategoryUid(&$result)
    {
        if (isset($result['category.category_uid'])) {
            $decodeCb = function (string $categoryUid) {
                return $this->uidEncoder->decode($categoryUid);

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getFilters has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function getFilters(ContainerConfigurationInterface $containerConfiguration, SearchCriteriaInterface $searchCriteria)
    {
        $filters = [];

        foreach ($searchCriteria->getFilterGroups() ?? [] as $filterGroup) {
Severity: Minor
Found in src/module-elasticsuite-core/Model/Search/RequestMapper.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function execute has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    protected function execute(InputInterface $input, OutputInterface $output)
    {
        $progressIndicator = new ProgressIndicator($output, 'verbose', 100, ['⠏', '⠛', '⠹', '⢸', '⣰', '⣤', '⣆', '⡇']);
        $progressIndicator->start('Processing...');

Severity: Minor
Found in src/module-elasticsuite-tracker/Console/FixData.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function process has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function process($eventData)
    {
        if (isset($eventData['page']['order']['items'])) {
            $eventData['page']['order']['items'] = array_values($eventData['page']['order']['items']);

Severity: Minor
Found in src/module-elasticsuite-tracker/Model/Event/Processor/OrderItems.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function parseNodeData has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function parseNodeData(\DOMNode $node, $path)
    {
        $nodeData = [];

        foreach ($node->childNodes as $childNode) {

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function parseNodeName has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    protected function parseNodeName($node)
    {
        $nodeName = $node->nodeName;
        if ($node->hasAttributes()) {
            $storeCodeNode     = $node->attributes->getNamedItem('store_code');

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function processTermsData has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function processTermsData($data, $type): array
    {
        $termsRelations = [];
        if ($type === ThesaurusInterface::TYPE_SYNONYM) {
            foreach (array_filter(explode(';', $data)) as $termItem) {
Severity: Minor
Found in src/module-elasticsuite-thesaurus/Model/Import/Provider.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getOrderItemVariables has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function getOrderItemVariables($item, $itemId)
    {
        $variables = [];

        if (!$item->isDummy()) {
Severity: Minor
Found in src/module-elasticsuite-tracker/Block/Variables/Page/Order.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function saveStoreRelation has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function saveStoreRelation(\Magento\Framework\Model\AbstractModel $object)
    {
        $storeIds = $object->getStoreIds();

        if (is_array($storeIds) && (count($storeIds) > 0)) {
Severity: Minor
Found in src/module-elasticsuite-thesaurus/Model/ResourceModel/Thesaurus.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getSearchQueriesByChildren has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function getSearchQueriesByChildren(CategoryInterface $rootCategory): array
    {
        $queries     = [];
        $childrenIds = $rootCategory->getResource()->getChildren($rootCategory, false);

Severity: Minor
Found in src/module-elasticsuite-virtual-category/Model/Rule.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function saveProductPositions has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function saveProductPositions(CategoryInterface $category)
    {
        // Can be 0 if not on a store view.
        $storeId = (int) $category->getStoreId();

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getIndex has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function getIndex($indexIdentifier, $storeId, $date)
    {
        $indexName = $indexIdentifier;

        try {
Severity: Minor
Found in src/module-elasticsuite-tracker/Model/IndexResolver.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getProductRewrite has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    public function getProductRewrite($productRequestPath, $categoryRequestPath, $storeId = null): ?UrlRewrite
    {
        $productRewrite = null;
        if (null === $storeId) {
            $storeId = $this->storeManager->getStore()->getId();
Severity: Minor
Found in src/module-elasticsuite-virtual-category/Model/Url.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getVirtualRootCategory has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function getVirtualRootCategory(CategoryInterface $category): ?CategoryInterface
    {
        $storeId      = $this->getStoreId();
        $rootCategory = null;

Severity: Minor
Found in src/module-elasticsuite-virtual-category/Model/Rule.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getChildrenCategories has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    protected function getChildrenCategories()
    {
        if ($this->childrenCategories === null) {
            $currentCategory = $this->getDataProvider()->getCategory();
            $this->childrenCategories = $currentCategory->getChildrenCategories();
Severity: Minor
Found in src/module-elasticsuite-virtual-category/Model/Layer/Filter/Category.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Function getVirtualCategoryQuery has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring.
Open

    private function getVirtualCategoryQuery(
        CategoryInterface $category,
        $excludedCategories = []
    ): ?QueryInterface {
        $rootCategory = $this->getVirtualRootCategory($category);
Severity: Minor
Found in src/module-elasticsuite-virtual-category/Model/Rule.php - About 25 mins to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Unexpected trailing comma.
Open

                            type: 'linear',

require or disallow trailing commas (comma-dangle)

Trailing commas in object literals are valid according to the ECMAScript 5 (and ECMAScript 3!) spec. However, IE8 (when not in IE8 document mode) and below will throw an error when it encounters trailing commas in JavaScript.

var foo = {
    bar: "baz",
    qux: "quux",
};

Trailing commas simplify adding and removing items to objects and arrays, since only the lines you are modifying must be touched. Another argument in favor of trailing commas is that it improves the clarity of diffs when an item is added or removed from an object or array:

Less clear:

var foo = {
-    bar: "baz",
-    qux: "quux"
+    bar: "baz"
 };

More clear:

var foo = {
     bar: "baz",
-    qux: "quux",
 };

Rule Details

This rule enforces consistent use of trailing commas in object and array literals.

Options

This rule has a string option or an object option:

{
    "comma-dangle": ["error", "never"],
    // or
    "comma-dangle": ["error", {
        "arrays": "never",
        "objects": "never",
        "imports": "never",
        "exports": "never",
        "functions": "ignore",
    }]
}
  • "never" (default) disallows trailing commas
  • "always" requires trailing commas
  • "always-multiline" requires trailing commas when the last element or property is in a different line than the closing ] or } and disallows trailing commas when the last element or property is on the same line as the closing ] or }
  • "only-multiline" allows (but does not require) trailing commas when the last element or property is in a different line than the closing ] or } and disallows trailing commas when the last element or property is on the same line as the closing ] or }

Trailing commas in function declarations and function calls are valid syntax since ECMAScript 2017; however, the string option does not check these situations for backwards compatibility.

You can also use an object option to configure this rule for each type of syntax. Each of the following options can be set to "never", "always", "always-multiline", "only-multiline", or "ignore". The default for each option is "never" unless otherwise specified.

  • arrays is for array literals and array patterns of destructuring. (e.g. let [a,] = [1,];)
  • objects is for object literals and object patterns of destructuring. (e.g. let {a,} = {a: 1};)
  • imports is for import declarations of ES Modules. (e.g. import {a,} from "foo";)
  • exports is for export declarations of ES Modules. (e.g. export {a,};)
  • functions is for function declarations and function calls. (e.g. (function(a,){ })(b,);)
    functions is set to "ignore" by default for consistency with the string option.

never

Examples of incorrect code for this rule with the default "never" option:

/*eslint comma-dangle: ["error", "never"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var arr = [1,2,];

foo({
  bar: "baz",
  qux: "quux",
});

Examples of correct code for this rule with the default "never" option:

/*eslint comma-dangle: ["error", "never"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var arr = [1,2];

foo({
  bar: "baz",
  qux: "quux"
});

always

Examples of incorrect code for this rule with the "always" option:

/*eslint comma-dangle: ["error", "always"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var arr = [1,2];

foo({
  bar: "baz",
  qux: "quux"
});

Examples of correct code for this rule with the "always" option:

/*eslint comma-dangle: ["error", "always"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var arr = [1,2,];

foo({
  bar: "baz",
  qux: "quux",
});

always-multiline

Examples of incorrect code for this rule with the "always-multiline" option:

/*eslint comma-dangle: ["error", "always-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var foo = { bar: "baz", qux: "quux", };

var arr = [1,2,];

var arr = [1,
    2,];

var arr = [
    1,
    2
];

foo({
  bar: "baz",
  qux: "quux"
});

Examples of correct code for this rule with the "always-multiline" option:

/*eslint comma-dangle: ["error", "always-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var foo = {bar: "baz", qux: "quux"};
var arr = [1,2];

var arr = [1,
    2];

var arr = [
    1,
    2,
];

foo({
  bar: "baz",
  qux: "quux",
});

only-multiline

Examples of incorrect code for this rule with the "only-multiline" option:

/*eslint comma-dangle: ["error", "only-multiline"]*/

var foo = { bar: "baz", qux: "quux", };

var arr = [1,2,];

var arr = [1,
    2,];

Examples of correct code for this rule with the "only-multiline" option:

/*eslint comma-dangle: ["error", "only-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var foo = {
    bar: "baz",
    qux: "quux"
};

var foo = {bar: "baz", qux: "quux"};
var arr = [1,2];

var arr = [1,
    2];

var arr = [
    1,
    2,
];

var arr = [
    1,
    2
];

foo({
  bar: "baz",
  qux: "quux",
});

foo({
  bar: "baz",
  qux: "quux"
});

functions

Examples of incorrect code for this rule with the {"functions": "never"} option:

/*eslint comma-dangle: ["error", {"functions": "never"}]*/

function foo(a, b,) {
}

foo(a, b,);
new foo(a, b,);

Examples of correct code for this rule with the {"functions": "never"} option:

/*eslint comma-dangle: ["error", {"functions": "never"}]*/

function foo(a, b) {
}

foo(a, b);
new foo(a, b);

Examples of incorrect code for this rule with the {"functions": "always"} option:

/*eslint comma-dangle: ["error", {"functions": "always"}]*/

function foo(a, b) {
}

foo(a, b);
new foo(a, b);

Examples of correct code for this rule with the {"functions": "always"} option:

/*eslint comma-dangle: ["error", {"functions": "always"}]*/

function foo(a, b,) {
}

foo(a, b,);
new foo(a, b,);

When Not To Use It

You can turn this rule off if you are not concerned with dangling commas. Source: http://eslint.org/docs/rules/

Unexpected trailing comma.
Open

                    hidden: this.currentChartRange.max > this.chartRangeThreshold && optionValue !== 'none',

require or disallow trailing commas (comma-dangle)

Trailing commas in object literals are valid according to the ECMAScript 5 (and ECMAScript 3!) spec. However, IE8 (when not in IE8 document mode) and below will throw an error when it encounters trailing commas in JavaScript.

var foo = {
    bar: "baz",
    qux: "quux",
};

Trailing commas simplify adding and removing items to objects and arrays, since only the lines you are modifying must be touched. Another argument in favor of trailing commas is that it improves the clarity of diffs when an item is added or removed from an object or array:

Less clear:

var foo = {
-    bar: "baz",
-    qux: "quux"
+    bar: "baz"
 };

More clear:

var foo = {
     bar: "baz",
-    qux: "quux",
 };

Rule Details

This rule enforces consistent use of trailing commas in object and array literals.

Options

This rule has a string option or an object option:

{
    "comma-dangle": ["error", "never"],
    // or
    "comma-dangle": ["error", {
        "arrays": "never",
        "objects": "never",
        "imports": "never",
        "exports": "never",
        "functions": "ignore",
    }]
}
  • "never" (default) disallows trailing commas
  • "always" requires trailing commas
  • "always-multiline" requires trailing commas when the last element or property is in a different line than the closing ] or } and disallows trailing commas when the last element or property is on the same line as the closing ] or }
  • "only-multiline" allows (but does not require) trailing commas when the last element or property is in a different line than the closing ] or } and disallows trailing commas when the last element or property is on the same line as the closing ] or }

Trailing commas in function declarations and function calls are valid syntax since ECMAScript 2017; however, the string option does not check these situations for backwards compatibility.

You can also use an object option to configure this rule for each type of syntax. Each of the following options can be set to "never", "always", "always-multiline", "only-multiline", or "ignore". The default for each option is "never" unless otherwise specified.

  • arrays is for array literals and array patterns of destructuring. (e.g. let [a,] = [1,];)
  • objects is for object literals and object patterns of destructuring. (e.g. let {a,} = {a: 1};)
  • imports is for import declarations of ES Modules. (e.g. import {a,} from "foo";)
  • exports is for export declarations of ES Modules. (e.g. export {a,};)
  • functions is for function declarations and function calls. (e.g. (function(a,){ })(b,);)
    functions is set to "ignore" by default for consistency with the string option.

never

Examples of incorrect code for this rule with the default "never" option:

/*eslint comma-dangle: ["error", "never"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var arr = [1,2,];

foo({
  bar: "baz",
  qux: "quux",
});

Examples of correct code for this rule with the default "never" option:

/*eslint comma-dangle: ["error", "never"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var arr = [1,2];

foo({
  bar: "baz",
  qux: "quux"
});

always

Examples of incorrect code for this rule with the "always" option:

/*eslint comma-dangle: ["error", "always"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var arr = [1,2];

foo({
  bar: "baz",
  qux: "quux"
});

Examples of correct code for this rule with the "always" option:

/*eslint comma-dangle: ["error", "always"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var arr = [1,2,];

foo({
  bar: "baz",
  qux: "quux",
});

always-multiline

Examples of incorrect code for this rule with the "always-multiline" option:

/*eslint comma-dangle: ["error", "always-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux"
};

var foo = { bar: "baz", qux: "quux", };

var arr = [1,2,];

var arr = [1,
    2,];

var arr = [
    1,
    2
];

foo({
  bar: "baz",
  qux: "quux"
});

Examples of correct code for this rule with the "always-multiline" option:

/*eslint comma-dangle: ["error", "always-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var foo = {bar: "baz", qux: "quux"};
var arr = [1,2];

var arr = [1,
    2];

var arr = [
    1,
    2,
];

foo({
  bar: "baz",
  qux: "quux",
});

only-multiline

Examples of incorrect code for this rule with the "only-multiline" option:

/*eslint comma-dangle: ["error", "only-multiline"]*/

var foo = { bar: "baz", qux: "quux", };

var arr = [1,2,];

var arr = [1,
    2,];

Examples of correct code for this rule with the "only-multiline" option:

/*eslint comma-dangle: ["error", "only-multiline"]*/

var foo = {
    bar: "baz",
    qux: "quux",
};

var foo = {
    bar: "baz",
    qux: "quux"
};

var foo = {bar: "baz", qux: "quux"};
var arr = [1,2];

var arr = [1,
    2];

var arr = [
    1,
    2,
];

var arr = [
    1,
    2
];

foo({
  bar: "baz",
  qux: "quux",
});

foo({
  bar: "baz",
  qux: "quux"
});

functions

Examples of incorrect code for this rule with the {"functions": "never"} option:

/*eslint comma-dangle: ["error", {"functions": "never"}]*/

function foo(a, b,) {
}

foo(a, b,);
new foo(a, b,);

Examples of correct code for this rule with the {"functions": "never"} option:

/*eslint comma-dangle: ["error", {"functions": "never"}]*/

function foo(a, b) {
}

foo(a, b);
new foo(a, b);

Examples of incorrect code for this rule with the {"functions": "always"} option:

/*eslint comma-dangle: ["error", {"functions": "always"}]*/

function foo(a, b) {
}

foo(a, b);
new foo(a, b);

Examples of correct code for this rule with the {"functions": "always"} option:

/*eslint comma-dangle: ["error", {"functions": "always"}]*/

function foo(a, b,) {
}

foo(a, b,);
new foo(a, b,);

When Not To Use It

You can turn this rule off if you are not concerned with dangling commas. Source: http://eslint.org/docs/rules/

Expected '===' and instead saw '=='.
Open

        return config.cookieRestrictionEnabled == false || $.mage.cookies.get(config.cookieRestrictionName) !== null;

Require === and !== (eqeqeq)

It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

  • [] == false
  • [] == ![]
  • 3 == "03"

If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

Rule Details

This rule is aimed at eliminating the type-unsafe equality operators.

Examples of incorrect code for this rule:

/*eslint eqeqeq: "error"*/

if (x == 42) { }

if ("" == text) { }

if (obj.getStuff() != undefined) { }

The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

Options

always

The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

Examples of incorrect code for the "always" option:

/*eslint eqeqeq: ["error", "always"]*/

a == b
foo == true
bananas != 1
value == undefined
typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null

Examples of correct code for the "always" option:

/*eslint eqeqeq: ["error", "always"]*/

a === b
foo === true
bananas !== 1
value === undefined
typeof foo === 'undefined'
'hello' !== 'world'
0 === 0
true === true
foo === null

This rule optionally takes a second argument, which should be an object with the following supported properties:

  • "null": Customize how this rule treats null literals. Possible values:
    • always (default) - Always use === or !==.
    • never - Never use === or !== with null.
    • ignore - Do not apply this rule to null.

smart

The "smart" option enforces the use of === and !== except for these cases:

  • Comparing two literal values
  • Evaluating the value of typeof
  • Comparing against null

Examples of incorrect code for the "smart" option:

/*eslint eqeqeq: ["error", "smart"]*/

// comparing two variables requires ===
a == b

// only one side is a literal
foo == true
bananas != 1

// comparing to undefined requires ===
value == undefined

Examples of correct code for the "smart" option:

/*eslint eqeqeq: ["error", "smart"]*/

typeof foo == 'undefined'
'hello' != 'world'
0 == 0
true == true
foo == null

allow-null

Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

["error", "always", {"null": "ignore"}]

When Not To Use It

If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

Severity
Category
Status
Source
Language