SpeciesFileGroup/taxonworks

View on GitHub

Showing 12,633 of 12,633 total issues

User controlled method execution
Open

<% if @user.nil? %>

Using unfiltered user data to select a Class or Method to be dynamically sent is dangerous.

It is much safer to whitelist the desired target or method.

Unsafe use of method:

method = params[:method]
@result = User.send(method.to_sym)

Safe:

method = params[:method] == 1 ? :method_a : :method_b
@result = User.send(method, *args)

Unsafe use of target:

table = params[:table]
model = table.classify.constantize
@result = model.send(:method)

Safe:

target = params[:target] == 1 ? Account : User
@result = target.send(:method, *args)

Including user data in the arguments passed to an Object#send is safe, as long as the method can properly handle potentially bad data.

Safe:

args = params["args"] || []
@result = User.send(:method, *args)

Possible SQL injection
Open

        <td> <%= d[:name] %> </td>

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    const roles = (body.extractor_roles || []).map((role) => ({
      ...role,
      person_id: role.person.id
    }))
app/javascript/vue/tasks/extracts/new_extract/store/actions/saveExtract.js on lines 20..23

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 45.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

export default function (state, descriptorId) {
  state.descriptors.find(d => d.id === descriptorId).hasSavedAtLeastOnce = true
};
app/javascript/vue/tasks/observation_matrices/matrix_row_coder/store/mutations/countdownStartedFor.js on lines 1..3

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 45.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Possible unprotected redirect
Open

        format.html { redirect_to @document, notice: 'Document was successfully updated.' }

Unvalidated redirects and forwards are #10 on the OWASP Top Ten.

Redirects which rely on user-supplied values can be used to "spoof" websites or hide malicious links in otherwise harmless-looking URLs. They can also allow access to restricted areas of a site if the destination is not validated.

Brakeman will raise warnings whenever redirect_to appears to be used with a user-supplied value that may allow them to change the :host option.

For example,

redirect_to params.merge(:action => :home)

will create a warning like

Possible unprotected redirect near line 46: redirect_to(params)

This is because params could contain :host => 'evilsite.com' which would redirect away from your site and to a malicious site.

If the first argument to redirect_to is a hash, then adding :only_path => true will limit the redirect to the current host. Another option is to specify the host explicitly.

redirect_to params.merge(:only_path => true)

redirect_to params.merge(:host => 'myhost.com')

If the first argument is a string, then it is possible to parse the string and extract the path:

redirect_to URI.parse(some_url).path

If the URL does not contain a protocol (e.g., http://), then you will probably get unexpected results, as redirect_to will prepend the current host name and a protocol.

Possible unprotected redirect
Open

        format.html { redirect_to @loan, notice: 'Loan was successfully updated.' }

Unvalidated redirects and forwards are #10 on the OWASP Top Ten.

Redirects which rely on user-supplied values can be used to "spoof" websites or hide malicious links in otherwise harmless-looking URLs. They can also allow access to restricted areas of a site if the destination is not validated.

Brakeman will raise warnings whenever redirect_to appears to be used with a user-supplied value that may allow them to change the :host option.

For example,

redirect_to params.merge(:action => :home)

will create a warning like

Possible unprotected redirect near line 46: redirect_to(params)

This is because params could contain :host => 'evilsite.com' which would redirect away from your site and to a malicious site.

If the first argument to redirect_to is a hash, then adding :only_path => true will limit the redirect to the current host. Another option is to specify the host explicitly.

redirect_to params.merge(:only_path => true)

redirect_to params.merge(:host => 'myhost.com')

If the first argument is a string, then it is possible to parse the string and extract the path:

redirect_to URI.parse(some_url).path

If the URL does not contain a protocol (e.g., http://), then you will probably get unexpected results, as redirect_to will prepend the current host name and a protocol.

Possible SQL injection
Open

    target.from("((#{target.to_sql}) EXCEPT (#{query.to_sql}) ) as #{table}")
Severity: Minor
Found in lib/queries.rb by brakeman

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

            .joins("LEFT JOIN a_objects as a_objects1 on a_objects1.id = biological_associations.biological_association_subject_id AND biological_associations.biological_association_subject_type = '" + target + "'")

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

        b = ::GeographicArea.joins(:geographic_items).where("ST_Contains(multi_polygon::geometry, GeomFromEWKT('srid=4326;#{containing_point}'))")

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

    if @tag = Tag.exists?(params.require(:global_id),
Severity: Critical
Found in app/controllers/tags_controller.rb by brakeman

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

      Arel.sql("(#{all_filters.gsub('?<year>', '').gsub('?<month>', '')})")

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

              q = q.order(Arel.sql(o))
Severity: Minor
Found in lib/queries/query/filter.rb by brakeman

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Unsafe reflection method safe_constantize called with parameter value
Open

    @klass = params.require(:klass).safe_constantize
Severity: Critical
Found in app/controllers/metadata_controller.rb by brakeman

Brakeman reports on several cases of remote code execution, in which a user is able to control and execute code in ways unintended by application authors.

The obvious form of this is the use of eval with user input.

However, Brakeman also reports on dangerous uses of send, constantize, and other methods which allow creation of arbitrary objects or calling of arbitrary methods.

Unescaped parameter value
Open

    <p> Without any preparation data: <%= v[:no_data].collect{|id, n| link_to(n, filter_collection_objects_task_path(taxon_name_id: id, descendants: true)) }.join(', ').html_safe %>.</p>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

<%= params[:query].html_safe %>

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

<%= raw some_method(cookie[:name]) %>

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

<%= @user.name.html_safe %>

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Unescaped parameter value
Open

        <%= v[:labels].collect{|l| tag.th(l) }.join.html_safe %>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

<%= params[:query].html_safe %>

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

<%= raw some_method(cookie[:name]) %>

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

<%= @user.name.html_safe %>

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Unescaped parameter value
Open

        <%= data[:data].keys.collect{|k| tag.th(k) }.join.html_safe %>

Cross-site scripting (or XSS) is #3 on the 2013 [OWASP Top Ten](https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS\)) web security risks and it pops up nearly everywhere.

XSS occurs when a user-controlled value is displayed on a web page without properly escaping it, allowing someone to inject Javascript or HTML into the page which will be interpreted and executed by the browser..

In Rails 2.x, values need to be explicitly escaped (e.g., by using the h method). Since Rails 3.x, auto-escaping in views is enabled by default. However, one can still use the raw or html_safe methods to output a value directly.

See the Ruby Security Guide for more details.

Query Parameters and Cookies

ERB example:

<%= params[:query].html_safe %>

Brakeman looks for several situations that can allow XSS. The simplest is like the example above: a value from the params or cookies is being directly output to a view. In such cases, it will issue a warning like:

Unescaped parameter value near line 3: params[:query]

By default, Brakeman will also warn when a parameter or cookie value is used as an argument to a method, the result of which is output unescaped to a view.

For example:

<%= raw some_method(cookie[:name]) %>

This raises a warning like:

Unescaped cookie value near line 5: some_method(cookies[:oreo])

However, the confidence level for this warning will be weak, because it is not directly outputting the cookie value.

Some methods are known to Brakeman to either be dangerous (link_to is one) or safe (escape_once). Users can specify safe methods using the --safe-methods option. Alternatively, Brakeman can be set to only warn when values are used directly with the --report-direct option.

Model Attributes

Because (many) models come from database values, Brakeman mistrusts them by default.

For example, if @user is an instance of a model set in an action like

def set_user
  @user = User.first
end

and there is a view with

<%= @user.name.html_safe %>

Brakeman will raise a warning like

Unescaped model attribute near line 3: User.first.name

If you trust all your data (although you probably shouldn't), this can be disabled with --ignore-model-output.

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    const roles = (body.extractor_roles || []).map((role) => ({
      ...role,
      person_id: role.person.id
    }))
app/javascript/vue/tasks/extracts/new_extract/store/actions/LoadExtract.js on lines 9..12

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 45.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Possible unprotected redirect
Open

        format.html { redirect_to @download.metamorphosize, notice: 'Download was successfully updated.' }

Unvalidated redirects and forwards are #10 on the OWASP Top Ten.

Redirects which rely on user-supplied values can be used to "spoof" websites or hide malicious links in otherwise harmless-looking URLs. They can also allow access to restricted areas of a site if the destination is not validated.

Brakeman will raise warnings whenever redirect_to appears to be used with a user-supplied value that may allow them to change the :host option.

For example,

redirect_to params.merge(:action => :home)

will create a warning like

Possible unprotected redirect near line 46: redirect_to(params)

This is because params could contain :host => 'evilsite.com' which would redirect away from your site and to a malicious site.

If the first argument to redirect_to is a hash, then adding :only_path => true will limit the redirect to the current host. Another option is to specify the host explicitly.

redirect_to params.merge(:only_path => true)

redirect_to params.merge(:host => 'myhost.com')

If the first argument is a string, then it is possible to parse the string and extract the path:

redirect_to URI.parse(some_url).path

If the URL does not contain a protocol (e.g., http://), then you will probably get unexpected results, as redirect_to will prepend the current host name and a protocol.

Possible SQL injection
Open

    Sequence.from("(#{cached_gene_attribute_sql}) as sequences").distinct
Severity: Minor
Found in app/models/descriptor/gene.rb by brakeman

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Possible SQL injection
Open

          .having("COUNT(roles.person_id) >= #{min_max[0]}")
Severity: Minor
Found in lib/queries/person/filter.rb by brakeman

Injection is #1 on the 2013 OWASP Top Ten web security risks. SQL injection is when a user is able to manipulate a value which is used unsafely inside a SQL query. This can lead to data leaks, data loss, elevation of privilege, and other unpleasant outcomes.

Brakeman focuses on ActiveRecord methods dealing with building SQL statements.

A basic (Rails 2.x) example looks like this:

User.first(:conditions => "username = '#{params[:username]}'")

Brakeman would produce a warning like this:

Possible SQL injection near line 30: User.first(:conditions => ("username = '#{params[:username]}'"))

The safe way to do this query is to use a parameterized query:

User.first(:conditions => ["username = ?", params[:username]])

Brakeman also understands the new Rails 3.x way of doing things (and local variables and concatenation):

username = params[:user][:name].downcase
password = params[:user][:password]

User.first.where("username = '" + username + "' AND password = '" + password + "'")

This results in this kind of warning:

Possible SQL injection near line 37:
User.first.where((((("username = '" + params[:user][:name].downcase) + "' AND password = '") + params[:user][:password]) + "'"))

See the Ruby Security Guide for more information and Rails-SQLi.org for many examples of SQL injection in Rails.

Severity
Category
Status
Source
Language