Mass assignment is not restricted using attr_accessible Open
class Todo < ApplicationRecord
- Read upRead up
- Exclude checks
This warning comes up if a model does not limit what attributes can be set through mass assignment.
In particular, this check looks for attr_accessible
inside model definitions. If it is not found, this warning will be issued.
Brakeman also warns on use of attr_protected
- especially since it was found to be vulnerable to bypass. Warnings for mass assignment on models using attr_protected
will be reported, but at a lower confidence level.
Note that disabling mass assignment globally will suppress these warnings.
Unprotected mass assignment Open
p = Project.create(value) if p.nil?
- Read upRead up
- Exclude checks
Mass assignment is a feature of Rails which allows an application to create a record from the values of a hash.
Example:
User.new(params[:user])
Unfortunately, if there is a user field called admin
which controls administrator access, now any user can make themselves an administrator.
attr_accessible
and attr_protected
can be used to limit mass assignment. However, Brakeman will warn unless attr_accessible
is used, or mass assignment is completely disabled.
There are two different mass assignment warnings which can arise. The first is when mass assignment actually occurs, such as the example above. This results in a warning like
Unprotected mass assignment near line 61: User.new(params[:user])
The other warning is raised whenever a model is found which does not use attr_accessible
. This produces generic warnings like
Mass assignment is not restricted using attr_accessible
with a list of affected models.
In Rails 3.1 and newer, mass assignment can easily be disabled:
config.active_record.whitelist_attributes = true
Unfortunately, it can also easily be bypassed:
User.new(params[:user], :without_protection => true)
Brakeman will warn on uses of without_protection
.
Unprotected mass assignment Open
c = Context.create(value) if c.nil?
- Read upRead up
- Exclude checks
Mass assignment is a feature of Rails which allows an application to create a record from the values of a hash.
Example:
User.new(params[:user])
Unfortunately, if there is a user field called admin
which controls administrator access, now any user can make themselves an administrator.
attr_accessible
and attr_protected
can be used to limit mass assignment. However, Brakeman will warn unless attr_accessible
is used, or mass assignment is completely disabled.
There are two different mass assignment warnings which can arise. The first is when mass assignment actually occurs, such as the example above. This results in a warning like
Unprotected mass assignment near line 61: User.new(params[:user])
The other warning is raised whenever a model is found which does not use attr_accessible
. This produces generic warnings like
Mass assignment is not restricted using attr_accessible
with a list of affected models.
In Rails 3.1 and newer, mass assignment can easily be disabled:
config.active_record.whitelist_attributes = true
Unfortunately, it can also easily be bypassed:
User.new(params[:user], :without_protection => true)
Brakeman will warn on uses of without_protection
.
Complex method Todo::import (95.0) Open
def self.import(filename, params, user)
default_context = user.contexts.order('id').first
return false if default_context.nil?
count = 0
- Read upRead up
- Exclude checks
Flog calculates the ABC score for methods. The ABC score is based on assignments, branches (method calls), and conditions.
You can read more about ABC metrics or the flog tool
Class Todo
has 37 methods (exceeds 20 allowed). Consider refactoring. Open
class Todo < ApplicationRecord
MAX_DESCRIPTION_LENGTH = 300
MAX_NOTES_LENGTH = 60_000
after_save :save_predecessors
File todo.rb
has 304 lines of code (exceeds 300 allowed). Consider refactoring. Open
class Todo < ApplicationRecord
MAX_DESCRIPTION_LENGTH = 300
MAX_NOTES_LENGTH = 60_000
after_save :save_predecessors
Complex method Todo#save_predecessors (26.6) Open
def save_predecessors
unless @predecessor_array.nil? # Only save predecessors if they changed
current_array = predecessors
remove_array = current_array - @predecessor_array
add_array = @predecessor_array - current_array
- Read upRead up
- Exclude checks
Flog calculates the ABC score for methods. The ABC score is based on assignments, branches (method calls), and conditions.
You can read more about ABC metrics or the flog tool
Todo#activate_pending_todos refers to 't' more than self (maybe move it to another class?) Open
pending_todos = successors.select { |t| t.uncompleted_predecessors.empty? && !t.completed? }
pending_todos.each { |t| t.activate! }
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
Todo#add_tags= refers to 'params' more than self (maybe move it to another class?) Open
unless params[:tag].nil?
tag_list = params[:tag].inject([]) { |list, value| list << value[:name] }
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
Todo#add_predecessor_list has approx 6 statements Open
def add_predecessor_list(predecessor_list)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Todo#save_predecessors has approx 10 statements Open
def save_predecessors
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Todo has at least 34 methods Open
class Todo < ApplicationRecord
- Read upRead up
- Exclude checks
Too Many Methods
is a special case of LargeClass
.
Example
Given this configuration
TooManyMethods:
max_methods: 3
and this code:
class TooManyMethods
def one; end
def two; end
def three; end
def four; end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:TooManyMethods has at least 4 methods (TooManyMethods)
Todo#self.import has approx 18 statements Open
def self.import(filename, params, user)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Todo#block_successors refers to 't' more than self (maybe move it to another class?) Open
active_successors = successors.select { |t| t.active? || t.deferred? }
active_successors.each { |t| t.block! }
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
Todo#predecessor_dependencies= refers to 'deps' more than self (maybe move it to another class?) Open
return if deps.nil?
# for multiple dependencies, value will be an array of id's, but for a single dependency,
# value will be a string. In that case convert to array
deps = [deps] unless deps.class == Array
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
Todo#self.import calls 'user.id' 3 times Open
unless find_by_description_and_user_id row[params[:description].to_i], user.id
todo = new
todo.user = user
todo.description = row[params[:description].to_i].truncate MAX_DESCRIPTION_LENGTH
todo.context = Context.find_by_name_and_user_id(row[params[:context].to_i], user.id) || default_context
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#destroy calls 'successor.uncompleted_predecessors' 2 times Open
successor.uncompleted_predecessors.delete(self)
if successor.uncompleted_predecessors.empty?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#save_predecessors calls 'todo.nil?' 2 times Open
unless todo.nil?
@removed_predecessors << todo
predecessors.delete(todo)
end
end
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:completed_at].to_i' 3 times Open
todo.state = row[params[:completed_at].to_i].present? ? 'completed' : 'active'
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
todo.due = row[params[:due].to_i]
todo.completed_at = row[params[:completed_at].to_i] if row[params[:completed_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:description].to_i' 2 times Open
unless find_by_description_and_user_id row[params[:description].to_i], user.id
todo = new
todo.user = user
todo.description = row[params[:description].to_i].truncate MAX_DESCRIPTION_LENGTH
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:created_at].to_i' 2 times Open
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:description].to_i]' 2 times Open
unless find_by_description_and_user_id row[params[:description].to_i], user.id
todo = new
todo.user = user
todo.description = row[params[:description].to_i].truncate MAX_DESCRIPTION_LENGTH
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:notes].to_i]' 2 times Open
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:created_at].to_i]' 2 times Open
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo has no descriptive comment Open
class Todo < ApplicationRecord
- Read upRead up
- Exclude checks
Classes and modules are the units of reuse and release. It is therefore considered good practice to annotate every class and module with a brief comment outlining its responsibilities.
Example
Given
class Dummy
# Do things...
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:Dummy has no descriptive comment (IrresponsibleModule)
Fixing this is simple - just an explaining comment:
# The Dummy class is responsible for ...
class Dummy
# Do things...
end
Todo#self.import calls 'params[:created_at]' 2 times Open
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#add_tags= calls 'params[:tag]' 2 times Open
unless params[:tag].nil?
tag_list = params[:tag].inject([]) { |list, value| list << value[:name] }
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:completed_at].to_i]' 3 times Open
todo.state = row[params[:completed_at].to_i].present? ? 'completed' : 'active'
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
todo.due = row[params[:due].to_i]
todo.completed_at = row[params[:completed_at].to_i] if row[params[:completed_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:description]' 2 times Open
unless find_by_description_and_user_id row[params[:description].to_i], user.id
todo = new
todo.user = user
todo.description = row[params[:description].to_i].truncate MAX_DESCRIPTION_LENGTH
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:project]' 2 times Open
todo.project = Project.find_by_name_and_user_id(row[params[:project].to_i], user.id) if row[params[:project].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:completed_at]' 3 times Open
todo.state = row[params[:completed_at].to_i].present? ? 'completed' : 'active'
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
todo.due = row[params[:due].to_i]
todo.completed_at = row[params[:completed_at].to_i] if row[params[:completed_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:project].to_i' 2 times Open
todo.project = Project.find_by_name_and_user_id(row[params[:project].to_i], user.id) if row[params[:project].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:notes]' 2 times Open
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'params[:notes].to_i' 2 times Open
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:completed_at].to_i].present?' 2 times Open
todo.state = row[params[:completed_at].to_i].present? ? 'completed' : 'active'
todo.notes = row[params[:notes].to_i].truncate MAX_NOTES_LENGTH if row[params[:notes].to_i].present?
todo.created_at = row[params[:created_at].to_i] if row[params[:created_at].to_i].present?
todo.due = row[params[:due].to_i]
todo.completed_at = row[params[:completed_at].to_i] if row[params[:completed_at].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#self.import calls 'row[params[:project].to_i]' 2 times Open
todo.project = Project.find_by_name_and_user_id(row[params[:project].to_i], user.id) if row[params[:project].to_i].present?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
Todo#has_project? performs a nil-check Open
return ! (project_id.nil? || project.is_a?(NullProject))
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#add_predecessor_list performs a nil-check Open
list << predecessor unless predecessor.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#project= performs a nil-check Open
elsif !(value.nil? || value.is_a?(NullProject))
p = Project.where(:name => value[:name]).first
p = Project.create(value) if p.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#add_tags= performs a nil-check Open
unless params[:tag].nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo has missing safe method 'toggle_completion!' Open
def toggle_completion!
- Read upRead up
- Exclude checks
A candidate method for the Missing Safe Method
smell are methods whose names end with an exclamation mark.
An exclamation mark in method names means (the explanation below is taken from here ):
The ! in method names that end with ! means, “This method is dangerous”—or, more precisely, this method is the “dangerous” version of an otherwise equivalent method, with the same name minus the !. “Danger” is relative; the ! doesn’t mean anything at all unless the method name it’s in corresponds to a similar but bang-less method name. So, for example, gsub! is the dangerous version of gsub. exit! is the dangerous version of exit. flatten! is the dangerous version of flatten. And so forth.
Such a method is called Missing Safe Method
if and only if her non-bang version does not exist and this method is reported as a smell.
Example
Given
class C
def foo; end
def foo!; end
def bar!; end
end
Reek would report bar!
as Missing Safe Method
smell but not foo!
.
Reek reports this smell only in a class context, not in a module context in order to allow perfectly legit code like this:
class Parent
def foo; end
end
module Dangerous
def foo!; end
end
class Son < Parent
include Dangerous
end
class Daughter < Parent
end
In this example, Reek would not report the Missing Safe Method
smell for the method foo
of the Dangerous
module.
Todo#predecessor_dependencies= performs a nil-check Open
return if deps.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#save_predecessors performs a nil-check Open
unless @predecessor_array.nil? # Only save predecessors if they changed
current_array = predecessors
remove_array = current_array - @predecessor_array
add_array = @predecessor_array - current_array
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo has missing safe method 'toggle_star!' Open
def toggle_star!
- Read upRead up
- Exclude checks
A candidate method for the Missing Safe Method
smell are methods whose names end with an exclamation mark.
An exclamation mark in method names means (the explanation below is taken from here ):
The ! in method names that end with ! means, “This method is dangerous”—or, more precisely, this method is the “dangerous” version of an otherwise equivalent method, with the same name minus the !. “Danger” is relative; the ! doesn’t mean anything at all unless the method name it’s in corresponds to a similar but bang-less method name. So, for example, gsub! is the dangerous version of gsub. exit! is the dangerous version of exit. flatten! is the dangerous version of flatten. And so forth.
Such a method is called Missing Safe Method
if and only if her non-bang version does not exist and this method is reported as a smell.
Example
Given
class C
def foo; end
def foo!; end
def bar!; end
end
Reek would report bar!
as Missing Safe Method
smell but not foo!
.
Reek reports this smell only in a class context, not in a module context in order to allow perfectly legit code like this:
class Parent
def foo; end
end
module Dangerous
def foo!; end
end
class Son < Parent
include Dangerous
end
class Daughter < Parent
end
In this example, Reek would not report the Missing Safe Method
smell for the method foo
of the Dangerous
module.
Todo#context= performs a nil-check Open
c = Context.create(value) if c.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#project performs a nil-check Open
original_project.nil? ? Project.null_object : original_project
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#self.import performs a nil-check Open
return false if default_context.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#add_predecessor performs a nil-check Open
return if t.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
Todo#activate_pending_todos has the variable name 't' Open
pending_todos = successors.select { |t| t.uncompleted_predecessors.empty? && !t.completed? }
pending_todos.each { |t| t.activate! }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Todo#project= has the variable name 'p' Open
p = Project.where(:name => value[:name]).first
p = Project.create(value) if p.nil?
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Todo#add_predecessor has the parameter name 't' Open
def add_predecessor(t)
- Read upRead up
- Exclude checks
An Uncommunicative Parameter Name
is a parameter name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Todo#block_successors has the variable name 't' Open
active_successors = successors.select { |t| t.active? || t.deferred? }
active_successors.each { |t| t.block! }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
Todo#context= has the variable name 'c' Open
c = Context.where(:name => value[:name]).first
c = Context.create(value) if c.nil?
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.