Mass assignment is not restricted using attr_accessible Open
class User < ApplicationRecord
- Read upRead up
- Exclude checks
This warning comes up if a model does not limit what attributes can be set through mass assignment.
In particular, this check looks for attr_accessible
inside model definitions. If it is not found, this warning will be issued.
Brakeman also warns on use of attr_protected
- especially since it was found to be vulnerable to bypass. Warnings for mass assignment on models using attr_protected
will be reported, but at a lower confidence level.
Note that disabling mass assignment globally will suppress these warnings.
Class User
has 31 methods (exceeds 20 allowed). Consider refactoring. Open
class User < ApplicationRecord
# Virtual attribute for the unencrypted password
attr_accessor :password
cattr_accessor :per_page
Complex method User::has_many#actionize (34.4) Open
def actionize(scope_conditions = {})
todos_in_project = where(scope_conditions).includes(:todos)
todos_in_project = todos_in_project.sort_by { |x| [-x.todos.active.count, -x.id] }
todos_in_project.reject { |p| p.todos.active.count > 0 }
sorted_project_ids = todos_in_project.map(&:id)
- Read upRead up
- Exclude checks
Flog calculates the ABC score for methods. The ABC score is based on assignments, branches (method calls), and conditions.
You can read more about ABC metrics or the flog tool
Complex method User::has_many#update_positions (32.4) Open
def update_positions(project_ids)
project_ids.each_with_index do |id, position|
project = find_by(id: id.to_i)
raise I18n.t('models.user.error_project_not_associated', :project => id, :user => @user.id) if project.nil?
project.update_attribute(:position, position + 1)
- Read upRead up
- Exclude checks
Flog calculates the ABC score for methods. The ABC score is based on assignments, branches (method calls), and conditions.
You can read more about ABC metrics or the flog tool
User#offset_from refers to 'projects' more than self (maybe move it to another class?) Open
position = projects.index(project)
return nil if position == 0 && offset < 0
projects.at(position + offset)
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#update_positions contains iterators nested 2 deep Open
context = detect { |c| c.id == id.to_i }
- Read upRead up
- Exclude checks
A Nested Iterator
occurs when a block contains another block.
Example
Given
class Duck
class << self
def duck_names
%i!tick trick track!.each do |surname|
%i!duck!.each do |last_name|
puts "full name is #{surname} #{last_name}"
end
end
end
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[5]:Duck#duck_names contains iterators nested 2 deep (NestedIterators)
User has at least 28 methods Open
class User < ApplicationRecord
- Read upRead up
- Exclude checks
Too Many Methods
is a special case of LargeClass
.
Example
Given this configuration
TooManyMethods:
max_methods: 3
and this code:
class TooManyMethods
def one; end
def two; end
def three; end
def four; end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:TooManyMethods has at least 4 methods (TooManyMethods)
User#cache_note_counts refers to 'project' more than self (maybe move it to another class?) Open
project.cached_note_count = project_note_counts[project.id] || 0
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#projects_in_state_by_position refers to 'p' more than self (maybe move it to another class?) Open
select { |p| p.state == state }.sort_by { |p| p.position }
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#find_by_params refers to 'params' more than self (maybe move it to another class?) Open
find(params['id'] || params['context_id']) || nil
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#actionize has approx 10 statements Open
def actionize(scope_conditions = {})
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
User#find_by_params refers to 'params' more than self (maybe move it to another class?) Open
find(params['id'] || params['project_id'])
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#offset_from refers to 'position' more than self (maybe move it to another class?) Open
return nil if position == 0 && offset < 0
projects.at(position + offset)
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
User#display_name calls 'first_name.blank?' 2 times Open
if first_name.blank? && last_name.blank?
return login
elsif first_name.blank?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
User has no descriptive comment Open
class User < ApplicationRecord
- Read upRead up
- Exclude checks
Classes and modules are the units of reuse and release. It is therefore considered good practice to annotate every class and module with a brief comment outlining its responsibilities.
Example
Given
class Dummy
# Do things...
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:Dummy has no descriptive comment (IrresponsibleModule)
Fixing this is simple - just an explaining comment:
# The Dummy class is responsible for ...
class Dummy
# Do things...
end
User assumes too much for instance variable '@user' Open
class User < ApplicationRecord
- Read upRead up
- Exclude checks
Classes should not assume that instance variables are set or present outside of the current class definition.
Good:
class Foo
def initialize
@bar = :foo
end
def foo?
@bar == :foo
end
end
Good as well:
class Foo
def foo?
bar == :foo
end
def bar
@bar ||= :foo
end
end
Bad:
class Foo
def go_foo!
@bar = :foo
end
def foo?
@bar == :foo
end
end
Example
Running Reek on:
class Dummy
def test
@ivar
end
end
would report:
[1]:InstanceVariableAssumption: Dummy assumes too much for instance variable @ivar
Note that this example would trigger this smell warning as well:
class Parent
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
@omg
end
end
The way to address the smell warning is that you should create an attr_reader
to use @omg
in the subclass and not access @omg
directly like this:
class Parent
attr_reader :omg
def initialize(omg)
@omg = omg
end
end
class Child < Parent
def foo
omg
end
end
Directly accessing instance variables is considered a smell because it breaks encapsulation and makes it harder to reason about code.
If you don't want to expose those methods as public API just make them private like this:
class Parent
def initialize(omg)
@omg = omg
end
private
attr_reader :omg
end
class Child < Parent
def foo
omg
end
end
Current Support in Reek
An instance variable must:
- be set in the constructor
- or be accessed through a method with lazy initialization / memoization.
If not, Instance Variable Assumption will be reported.
User#display_name calls 'last_name.blank?' 2 times Open
if first_name.blank? && last_name.blank?
return login
elsif first_name.blank?
return last_name
elsif last_name.blank?
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
User#actionize calls 'where(scope_conditions)' 2 times Open
todos_in_project = where(scope_conditions).includes(:todos)
todos_in_project = todos_in_project.sort_by { |x| [-x.todos.active.count, -x.id] }
todos_in_project.reject { |p| p.todos.active.count > 0 }
sorted_project_ids = todos_in_project.map(&:id)
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
User declares the class variable '@@per_page' Open
@@per_page = 25
- Read upRead up
- Exclude checks
Class variables form part of the global runtime state, and as such make it easy for one part of the system to accidentally or inadvertently depend on another part of the system. So the system becomes more prone to problems where changing something over here breaks something over there. In particular, class variables can make it hard to set up tests (because the context of the test includes all global state).
For a detailed explanation, check out this article
Example
Given
class Dummy
@@class_variable = :whatever
end
Reek would emit the following warning:
reek test.rb
test.rb -- 1 warning:
[2]:Dummy declares the class variable @@class_variable (ClassVariable)
Getting rid of the smell
You can use class-instance variable to mitigate the problem (as also suggested in the linked article above):
class Dummy
@class_variable = :whatever
end
User#destroy_dependencies calls 'Dependency.where(predecessor_id: ids)' 2 times Open
pred_deps = Dependency.where(predecessor_id: ids).destroy_all
succ_deps = Dependency.where(predecessor_id: ids).destroy_all
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
User#destroy_dependencies calls 'Dependency.where(predecessor_id: ids).destroy_all' 2 times Open
pred_deps = Dependency.where(predecessor_id: ids).destroy_all
succ_deps = Dependency.where(predecessor_id: ids).destroy_all
- Read upRead up
- Exclude checks
Duplication occurs when two fragments of code look nearly identical, or when two fragments of code have nearly identical effects at some conceptual level.
Reek implements a check for Duplicate Method Call.
Example
Here's a very much simplified and contrived example. The following method will report a warning:
def double_thing()
@other.thing + @other.thing
end
One quick approach to silence Reek would be to refactor the code thus:
def double_thing()
thing = @other.thing
thing + thing
end
A slightly different approach would be to replace all calls of double_thing
by calls to @other.double_thing
:
class Other
def double_thing()
thing + thing
end
end
The approach you take will depend on balancing other factors in your code.
User#self.authenticate performs a nil-check Open
return nil if candidate.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
User#update_positions performs a nil-check Open
raise I18n.t('models.user.error_project_not_associated', :project => id, :user => @user.id) if project.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
User#create_hash doesn't depend on instance state (maybe move it to another class?) Open
def create_hash(s)
- Read upRead up
- Exclude checks
A Utility Function is any instance method that has no dependency on the state of the instance.
User#update_positions performs a nil-check Open
raise I18n.t('models.user.error_context_not_associated', :context => id, :user => @user.id) if context.nil?
- Read upRead up
- Exclude checks
A NilCheck
is a type check. Failures of NilCheck
violate the "tell, don't ask" principle.
Additionally, type checks often mask bigger problems in your source code like not using OOP and / or polymorphism when you should.
Example
Given
class Klass
def nil_checker(argument)
if argument.nil?
puts "argument isn't nil!"
end
end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[3]:Klass#nil_checker performs a nil-check. (NilCheck)
User#date doesn't depend on instance state (maybe move it to another class?) Open
def date
- Read upRead up
- Exclude checks
A Utility Function is any instance method that has no dependency on the state of the instance.
User#password is a writable attribute Open
attr_accessor :password
- Read upRead up
- Exclude checks
A class that publishes a setter for an instance variable invites client classes to become too intimate with its inner workings, and in particular with its representation of state.
The same holds to a lesser extent for getters, but Reek doesn't flag those.
Example
Given:
class Klass
attr_accessor :dummy
end
Reek would emit the following warning:
reek test.rb
test.rb -- 1 warning:
[2]:Klass declares the writable attribute dummy (Attribute)
User#count_by_group has the parameter name 'g' Open
def count_by_group(g)
- Read upRead up
- Exclude checks
An Uncommunicative Parameter Name
is a parameter name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#projects_in_state_by_position has the variable name 'p' Open
select { |p| p.state == state }.sort_by { |p| p.position }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#find_and_activate_ready has the variable name 't' Open
where('show_from <= ?', Time.current).collect { |t| t.activate! }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#actionize has the variable name 'p' Open
todos_in_project.reject { |p| p.todos.active.count > 0 }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#create_hash has the parameter name 's' Open
def create_hash(s)
- Read upRead up
- Exclude checks
An Uncommunicative Parameter Name
is a parameter name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#actionize has the variable name 'x' Open
todos_in_project = todos_in_project.sort_by { |x| [-x.todos.active.count, -x.id] }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.
User#update_positions has the variable name 'c' Open
context = detect { |c| c.id == id.to_i }
- Read upRead up
- Exclude checks
An Uncommunicative Variable Name
is a variable name that doesn't communicate its intent well enough.
Poor names make it hard for the reader to build a mental picture of what's going on in the code. They can also be mis-interpreted; and they hurt the flow of reading, because the reader must slow down to interpret the names.