Showing 171 of 171 total issues
Class has too many lines. [154/100] Open
class SGF::Node
include Observable
include Enumerable
extend ::T::Sig
- Read upRead up
- Exclude checks
This cop checks if the length a class exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method has too many lines. [14/10] Open
def parse(sgf, strict_parsing = true)
error_checker = strict_parsing ? SGF::StrictErrorChecker.new : SGF::LaxErrorChecker.new
@sgf_stream = SGF::Stream.new(sgf, error_checker)
@assembler = SGF::CollectionAssembler.new
until @sgf_stream.eof?
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method has too many lines. [12/10] Open
def parse_node_data
@node_properties = {}
while still_inside_node?
identity = @sgf_stream.read_token SGF::IdentityToken.new
property_format = property_token_type identity
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method has too many lines. [12/10] Open
def parent=(parent)
if @parent
@parent.remove_child(self)
end
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method has too many lines. [11/10] Open
def slice(range)
new_root = nil
each do |node|
if node.depth == range.begin
new_root = node.dup
- Read upRead up
- Exclude checks
This cop checks if the length of a method exceeds some maximum value. Comment lines can optionally be ignored. The maximum allowed length is configurable.
Method to_play
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
def to_play(color, pos)
if pos == ''
gtp_pos = 'pass'
else
pos = pos.bytes
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
SGF::Collection#respond_to_missing? has boolean parameter '_include_private' Open
def respond_to_missing?(name, _include_private = false)
- Read upRead up
- Exclude checks
Boolean Parameter
is a special case of Control Couple
, where a method parameter is defaulted to true or false. A Boolean Parameter effectively permits a method's caller to decide which execution path to take. This is a case of bad cohesion. You're creating a dependency between methods that is not really necessary, thus increasing coupling.
Example
Given
class Dummy
def hit_the_switch(switch = true)
if switch
puts 'Hitting the switch'
# do other things...
else
puts 'Not hitting the switch'
# do other things...
end
end
end
Reek would emit the following warning:
test.rb -- 3 warnings:
[1]:Dummy#hit_the_switch has boolean parameter 'switch' (BooleanParameter)
[2]:Dummy#hit_the_switch is controlled by argument switch (ControlParameter)
Note that both smells are reported, Boolean Parameter
and Control Parameter
.
Getting rid of the smell
This is highly dependent on your exact architecture, but looking at the example above what you could do is:
- Move everything in the
if
branch into a separate method - Move everything in the
else
branch into a separate method - Get rid of the
hit_the_switch
method alltogether - Make the decision what method to call in the initial caller of
hit_the_switch
SGF::Parser has 6 constants Open
class SGF::Parser
- Read upRead up
- Exclude checks
Too Many Constants
is a special case of LargeClass
.
Example
Given this configuration
TooManyConstants:
max_constants: 3
and this code:
class TooManyConstants
CONST_1 = :dummy
CONST_2 = :dummy
CONST_3 = :dummy
CONST_4 = :dummy
end
Reek would emit the following warning:
test.rb -- 1 warnings:
[1]:TooManyConstants has 4 constants (TooManyConstants)
SGF::MultiPropertyToken#still_inside? is controlled by argument 'char' Open
return true if char != ']'
- Read upRead up
- Exclude checks
Control Parameter
is a special case of Control Couple
Example
A simple example would be the "quoted" parameter in the following method:
def write(quoted)
if quoted
write_quoted @value
else
write_unquoted @value
end
end
Fixing those problems is out of the scope of this document but an easy solution could be to remove the "write" method alltogether and to move the calls to "writequoted" / "writeunquoted" in the initial caller of "write".
SGF::Node#stringify_identity_and_property refers to 'property' more than self (maybe move it to another class?) Open
new_property = property.instance_of?(Array) ? property.join('][') : property
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
SGF::Collection#update is controlled by argument 'message' Open
case message
- Read upRead up
- Exclude checks
Control Parameter
is a special case of Control Couple
Example
A simple example would be the "quoted" parameter in the following method:
def write(quoted)
if quoted
write_quoted @value
else
write_unquoted @value
end
end
Fixing those problems is out of the scope of this document but an easy solution could be to remove the "write" method alltogether and to move the calls to "writequoted" / "writeunquoted" in the initial caller of "write".
SGF::Parser#parse is controlled by argument 'strict_parsing' Open
error_checker = strict_parsing ? SGF::StrictErrorChecker.new : SGF::LaxErrorChecker.new
- Read upRead up
- Exclude checks
Control Parameter
is a special case of Control Couple
Example
A simple example would be the "quoted" parameter in the following method:
def write(quoted)
if quoted
write_quoted @value
else
write_unquoted @value
end
end
Fixing those problems is out of the scope of this document but an easy solution could be to remove the "write" method alltogether and to move the calls to "writequoted" / "writeunquoted" in the initial caller of "write".
SGF::StrictErrorChecker#check_for_errors_before_parsing refers to 'string' more than self (maybe move it to another class?) Open
if string[/\A\s*\(\s*;/]
return true
else
msg = 'The first two non-whitespace characters of the string should be (;'
msg += " but they were #{string[0..1]} instead."
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
SGF::Node has at least 20 methods Open
class SGF::Node
- Read upRead up
- Exclude checks
Too Many Methods
is a special case of LargeClass
.
Example
Given this configuration
TooManyMethods:
max_methods: 3
and this code:
class TooManyMethods
def one; end
def two; end
def three; end
def four; end
end
Reek would emit the following warning:
test.rb -- 1 warning:
[1]:TooManyMethods has at least 4 methods (TooManyMethods)
SGF::Collection#each contains iterators nested 2 deep Open
game.each do |node|
- Read upRead up
- Exclude checks
A Nested Iterator
occurs when a block contains another block.
Example
Given
class Duck
class << self
def duck_names
%i!tick trick track!.each do |surname|
%i!duck!.each do |last_name|
puts "full name is #{surname} #{last_name}"
end
end
end
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[5]:Duck#duck_names contains iterators nested 2 deep (NestedIterators)
SGF::GtpWriter#gtp_move refers to 'pps' more than self (maybe move it to another class?) Open
if pps['SZ']
@boardsize = pps['SZ'].to_i
out = []
out << "komi #{pps['KM']}" if pps['KM']
out << "boardsize #{pps['SZ']}\nclear_board"
- Read upRead up
- Exclude checks
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
class Warehouse
def sale_price(item)
(item.price - item.rebate) * @vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
SGF::Node#inspect has approx 6 statements Open
def inspect
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
SGF::Parser#parse_node_data has approx 7 statements Open
def parse_node_data
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
SGF::Parser#parse has approx 10 statements Open
def parse(sgf, strict_parsing = true)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
SGF::GtpWriter#gtp_move has approx 13 statements Open
def gtp_move(node)
- Read upRead up
- Exclude checks
A method with Too Many Statements
is any method that has a large number of lines.
Too Many Statements
warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements
counts +1 for every simple statement in a method and +1 for every statement within a control structure (if
, else
, case
, when
, for
, while
, until
, begin
, rescue
) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
def parse(arg, argv, &error)
if !(val = arg) and (argv.empty? or /\A-/ =~ (val = argv[0]))
return nil, block, nil # +1
end
opt = (val = parse_arg(val, &error))[1] # +2
val = conv_arg(*val) # +3
if opt and !arg
argv.shift # +4
else
val[0] = nil # +5
end
val # +6
end
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)