Unidata/MetPy

View on GitHub
examples/gridding/Find_Natural_Neighbors_Verification.py

Summary

Maintainability
C
1 day
Test Coverage
# Copyright (c) 2016 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
===================================
Find Natural Neighbors Verification
===================================

Finding natural neighbors in a triangulation

A triangle is a natural neighbor of a point if that point is within a circumscribed
circle ("circumcircle") containing the triangle.
"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Delaunay

from metpy.interpolate.geometry import circumcircle_radius, find_natural_neighbors

# Create test observations, test points, and plot the triangulation and points.
gx, gy = np.meshgrid(np.arange(0, 20, 4), np.arange(0, 20, 4))
pts = np.vstack([gx.ravel(), gy.ravel()]).T
tri = Delaunay(pts)

fig, ax = plt.subplots(figsize=(15, 10))
for i, inds in enumerate(tri.simplices):
    pts = tri.points[inds]
    x, y = np.vstack((pts, pts[0])).T
    ax.plot(x, y)
    ax.annotate(i, xy=(np.mean(x), np.mean(y)))

test_points = np.array([[2, 2], [5, 10], [12, 13.4], [12, 8], [20, 20]])

for i, (x, y) in enumerate(test_points):
    ax.plot(x, y, 'k.', markersize=6)
    ax.annotate('test ' + str(i), xy=(x, y))

###########################################
# Since finding natural neighbors already calculates circumcenters, return
# that information for later use.
#
# The key of the neighbors dictionary refers to the test point index, and the list of integers
# are the triangles that are natural neighbors of that particular test point.
#
# Since point 4 is far away from the triangulation, it has no natural neighbors.
# Point 3 is at the confluence of several triangles so it has many natural neighbors.
neighbors, circumcenters = find_natural_neighbors(tri, test_points)
print(neighbors)

###########################################
# We can plot all of the triangles as well as the circles representing the circumcircles
#
fig, ax = plt.subplots(figsize=(15, 10))
for i, inds in enumerate(tri.simplices):
    pts = tri.points[inds]
    x, y = np.vstack((pts, pts[0])).T
    ax.plot(x, y)
    ax.annotate(i, xy=(np.mean(x), np.mean(y)))

# Using circumcenters and calculated circumradii, plot the circumcircles
for idx, cc in enumerate(circumcenters):
    ax.plot(cc[0], cc[1], 'k.', markersize=5)
    circ = plt.Circle(cc, circumcircle_radius(*tri.points[tri.simplices[idx]]),
                      edgecolor='k', facecolor='none', transform=fig.axes[0].transData)
    ax.add_artist(circ)

ax.set_aspect('equal', 'datalim')

plt.show()